Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(8): e0078124, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39078191

RESUMO

Influenza remains a worldwide public health threat. Although seasonal influenza vaccines are currently the best means of preventing severe disease, the standard-of-care vaccines require frequent updating due to antigenic drift and can have low efficacy, particularly in vulnerable populations. Here, we demonstrate that a single administration of a recombinant adenovirus-associated virus (rAAV) vector expressing a computationally optimized broadly reactive antigen (COBRA)-derived influenza H1 hemagglutinin (HA) induces strongly neutralizing and broadly protective antibodies in naïve mice and ferrets with pre-existing influenza immunity. Following a lethal viral challenge, the rAAV-COBRA vaccine allowed for significantly reduced viral loads in the upper and lower respiratory tracts and complete protection from morbidity and mortality that lasted for at least 5 months post-vaccination. We observed no signs of antibody waning during this study. CpG motif enrichment of the antigen can act as an internal adjuvant to further enhance the immune responses to allow for lower vaccine dosages with the induction of unique interferon-producing CD4+ and CD8+ T cells specific to HA head and stem peptide sequences. Our studies highlight the utility of rAAV as an effective platform to improve seasonal influenza vaccines. IMPORTANCE: Developing an improved seasonal influenza vaccine remains an ambitious goal of researchers and clinicians alike. With influenza routinely causing severe epidemics with the potential to rise to pandemic levels, it is critical to create an effective, broadly protective, and durable vaccine to improve public health worldwide. As a potential solution, we created a rAAV viral vector expressing a COBRA-optimized influenza hemagglutinin antigen with modestly enriched CpG motifs to evoke a robust and long-lasting immune response after a single intramuscular dose without needing boosts or adjuvants. Importantly, the rAAV vaccine boosted antibody breadth to future strains in ferrets with pre-existing influenza immunity. Together, our data support further investigation into the utility of viral vectors as a potential avenue to improve our seasonal influenza vaccines.


Assuntos
Imunidade Adaptativa , Anticorpos Antivirais , Dependovirus , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Dependovirus/genética , Dependovirus/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Feminino , Vetores Genéticos , Camundongos Endogâmicos BALB C , Vacinação , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Linfócitos T CD8-Positivos/imunologia
2.
Hum Vaccin Immunother ; 20(1): 2356269, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38826029

RESUMO

The influenza viruses cause seasonal respiratory illness that affect millions of people globally every year. Prophylactic vaccines are the recommended method to prevent the breakout of influenza epidemics. One of the current commercial influenza vaccines consists of inactivated viruses that are selected months prior to the start of a new influenza season. In many seasons, the vaccine effectiveness (VE) of these vaccines can be relatively low. Therefore, there is an urgent need to develop an improved, more universal influenza vaccine (UIV) that can provide broad protection against various drifted strains in all age groups. To meet this need, the computationally optimized broadly reactive antigen (COBRA) methodology was developed to design a hemagglutinin (HA) molecule as a new influenza vaccine. In this study, COBRA HA-based inactivated influenza viruses (IIV) expressing the COBRA HA from H1 or H3 influenza viruses were developed and characterized for the elicitation of immediate and long-term protective immunity in both immunologically naïve or influenza pre-immune animal models. These results were compared to animals vaccinated with IIV vaccines expressing wild-type H1 or H3 HA proteins (WT-IIV). The COBRA-IIV elicited long-lasting broadly reactive antibodies that had hemagglutination-inhibition (HAI) activity against drifted influenza variants.


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vacinas de Produtos Inativados , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Animais , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Camundongos , Feminino , Camundongos Endogâmicos BALB C , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Eficácia de Vacinas , Testes de Inibição da Hemaglutinação
3.
Sci Adv ; 10(19): eadk9137, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728395

RESUMO

Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet, the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a diet-induced obese ferret model and tools to demonstrate that, like humans, obesity resulted in notable changes to the lung microenvironment, leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for a longer period, making them more likely to transmit to contacts. These data suggest that the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission and a key tool for therapeutic and intervention development for this high-risk population.


Assuntos
Modelos Animais de Doenças , Furões , Obesidade , Infecções por Orthomyxoviridae , Animais , Obesidade/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Pulmão/virologia , Pulmão/patologia , Índice de Gravidade de Doença , Dieta , Humanos , Eliminação de Partículas Virais , Influenza Humana/transmissão , Influenza Humana/virologia
4.
Nat Microbiol ; 9(6): 1593-1606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637722

RESUMO

Metabolic disease is epidemiologically linked to severe complications upon influenza virus infection, thus vaccination is a priority in this high-risk population. Yet, vaccine responses are less effective in these same hosts. Here we examined how the timing of diet switching from a high-fat diet to a control diet affected influenza vaccine efficacy in diet-induced obese mice. Our results demonstrate that the systemic meta-inflammation generated by high-fat diet exposure limited T cell maturation to the memory compartment at the time of vaccination, impacting the recall of effector memory T cells upon viral challenge. This was not improved with a diet switch post-vaccination. However, the metabolic dysfunction of T cells was reversed if weight loss occurred 4 weeks before vaccination, restoring a functional recall response. This corresponded with changes in the systemic obesity-related biomarkers leptin and adiponectin, highlighting the systemic and specific effects of diet on influenza vaccine immunogenicity.


Assuntos
Dieta Hiperlipídica , Vacinas contra Influenza , Obesidade , Infecções por Orthomyxoviridae , Animais , Camundongos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Obesidade/imunologia , Obesidade/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Camundongos Endogâmicos C57BL , Vacinação , Camundongos Obesos , Leptina/metabolismo , Masculino , Feminino , Adiponectina/metabolismo , Linfócitos T/imunologia
5.
Nature ; 628(8009): 835-843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600381

RESUMO

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Assuntos
Lesão Pulmonar , Necroptose , Infecções por Orthomyxoviridae , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Feminino , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/metabolismo , Vírus da Influenza A/classificação , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Lesão Pulmonar/complicações , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/virologia , Camundongos Endogâmicos C57BL , Necroptose/efeitos dos fármacos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/prevenção & controle , Síndrome do Desconforto Respiratório/virologia
6.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961247

RESUMO

Pregnant women and infants are considered high-risk groups for increased influenza disease severity. While influenza virus vaccines are recommended during pregnancy, infants cannot be vaccinated until at least six months of age. Passive transfer of maternal antibodies (matAbs) becomes vital for the infant's protection. Here, we employed an ultrasound-based timed-pregnancy murine model and examined matAb responses to distinct influenza vaccine platforms and influenza A virus (IAV) infection in dams and their offspring. We demonstrate vaccinating dams with a live-attenuated influenza virus (LAIV) vaccine or recombinant hemagglutinin (rHA) proteins administered with adjuvant resulted in enhanced and long-lasting immunity and protection from influenza in offspring. In contrast, a trivalent split-inactivated vaccine (TIV) afforded limited protection in our model. By cross-fostering pups, we show the timing of antibody transfer from vaccinated dams to their offspring (prenatal versus postnatal) can shape the antibody profile depending on the vaccine platform. Our studies provide information on how distinct influenza vaccines lead to immunogenicity and efficacy during pregnancy, impact the protection of their offspring, and detail roles for IgG1 and IgG2c in the development of vaccine administration during pregnancy that stimulate and measure expression of both antibody subclasses.

7.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808835

RESUMO

Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a novel diet-induced obese ferret model and new tools to demonstrate that like humans, obesity resulted in significant changes to the lung microenvironment leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for longer making them more likely to transmit to contacts. These data suggest the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission, and a key tool for therapeutic and intervention development for this high-risk population. Teaser: A new ferret model and tools to explore obesity's impact on respiratory virus infection, susceptibility, and community transmission.

8.
Mucosal Immunol ; 16(4): 551-562, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290501

RESUMO

Astroviruses cause a spectrum of diseases spanning asymptomatic infections to severe diarrhea, but little is understood about their pathogenesis. We previously determined that small intestinal goblet cells were the main cell type infected by murine astrovirus-1. Here, we focused on the host immune response to infection and inadvertently discovered a role for indoleamine 2,3-dioxygenase 1 (Ido1), a host tryptophan catabolizing enzyme, in the cellular tropism of murine and human astroviruses. We identified that Ido1 expression was highly enriched among infected goblet cells, and spatially corresponded to the zonation of infection. Because Ido1 can act as a negative regulator of inflammation, we hypothesized it could dampen host antiviral responses. Despite robust interferon signaling in goblet cells, as well as tuft cell and enterocyte bystanders, we observed delayed cytokine induction and suppressed levels of fecal lipocalin-2. Although we found Ido-/- animals were more resistant to infection, this was not associated with fewer goblet cells nor could it be rescued by knocking out interferon responses, suggesting that IDO1 instead regulates cell permissivity. We characterized IDO1-/- Caco-2 cells and observed significantly reduced human astrovirus-1 infection. Together this study highlights a role for Ido1 in astrovirus infection and epithelial cell maturation.


Assuntos
Infecções por Astroviridae , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Humanos , Camundongos , Células CACO-2 , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferons , Triptofano/metabolismo
9.
mBio ; 14(4): e0088723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37341495

RESUMO

Obesity has been epidemiologically and empirically linked with more severe diseases upon influenza infection. To ameliorate severe disease, treatment with antivirals, such as the neuraminidase inhibitor oseltamivir, is suggested to begin within days of infection especially in high-risk hosts. However, this treatment can be poorly effective and may generate resistance variants within the treated host. Here, we hypothesized that obesity would reduce oseltamivir treatment effectiveness in the genetically obese mouse model. We demonstrated that oseltamivir treatment does not improve viral clearance in obese mice. While no traditional variants associated with oseltamivir resistance emerged, we did note that drug treatment failed to quench the viral population and did lead to phenotypic drug resistance in vitro. Together, these studies suggest that the unique pathogenesis and immune responses in obese mice could have implications for pharmaceutical interventions and the within-host dynamics of the influenza virus population. IMPORTANCE Influenza virus infections, while typically resolving within days to weeks, can turn critical, especially in high-risk populations. Prompt antiviral administration is crucial to mitigating these severe sequalae, yet concerns remain if antiviral treatment is effective in hosts with obesity. Here, we show that oseltamivir does not improve viral clearance in genetically obese or type I interferon receptor-deficient mice. This suggests a blunted immune response may impair oseltamivir efficacy and render a host more susceptible to severe disease. This study furthers our understanding of oseltamivir treatment dynamics both systemically and in the lungs of obese mice, as well as the consequences of oseltamivir treatment for the within-host emergence of drug-resistant variants.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Camundongos , Animais , Humanos , Oseltamivir/uso terapêutico , Camundongos Obesos , Influenza Humana/tratamento farmacológico , Antivirais/uso terapêutico , Antivirais/farmacologia , Neuraminidase , Farmacorresistência Viral
10.
Nat Commun ; 13(1): 3416, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701424

RESUMO

Transmission of influenza A viruses (IAV) between hosts is subject to numerous physical and biological barriers that impose genetic bottlenecks, constraining viral diversity and adaptation. The bottlenecks within hosts and their potential impacts on evolutionary pathways taken during infection are poorly understood. To address this, we created highly diverse IAV libraries bearing molecular barcodes on two gene segments, enabling high-resolution tracking and quantification of unique virus lineages within hosts. Here we show that IAV infection in lungs is characterized by multiple within-host bottlenecks that result in "islands" of infection in lung lobes, each with genetically distinct populations. We perform site-specific inoculation of barcoded IAV in the upper respiratory tract of ferrets and track viral diversity as infection spreads to the trachea and lungs. We detect extensive compartmentalization of discrete populations within lung lobes. Bottleneck events and localized replication stochastically sample individual viruses from the upper respiratory tract or the trachea that become the dominant genotype in a particular lobe. These populations are shaped strongly by founder effects, with limited evidence for positive selection. The segregated sites of replication highlight the jackpot-style events that contribute to within-host influenza virus evolution and may account for low rates of intrahost adaptation.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Furões , Genótipo , Humanos , Vírus da Influenza A/genética , Replicação Viral/genética
11.
Emerg Infect Dis ; 26(12): 2887-2898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219648

RESUMO

Since their discovery in the United States in 1963, outbreaks of infection with equine influenza virus (H3N8) have been associated with serious respiratory disease in horses worldwide. Genomic analysis suggests that equine H3 viruses are of an avian lineage, likely originating in wild birds. Equine-like internal genes have been identified in avian influenza viruses isolated from wild birds in the Southern Cone of South America. However, an equine-like H3 hemagglutinin has not been identified. We isolated 6 distinct H3 viruses from wild birds in Chile that have hemagglutinin, nucleoprotein, nonstructural protein 1, and polymerase acidic genes with high nucleotide homology to the 1963 H3N8 equine influenza virus lineage. Despite the nucleotide similarity, viruses from Chile were antigenically more closely related to avian viruses and transmitted effectively in chickens, suggesting adaptation to the avian host. These studies provide the initial demonstration that equine-like H3 hemagglutinin continues to circulate in a wild bird reservoir.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Aviária , Animais , Galinhas , Chile/epidemiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Cavalos , Vírus da Influenza A Subtipo H3N8/genética , Influenza Aviária/epidemiologia , Filogenia
12.
mSystems ; 5(5)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873612

RESUMO

Influenza A virus (IAV) is a major pathogen of the human respiratory tract, where the virus coexists and interacts with bacterial populations comprising the respiratory tract microbiome. Synergies between IAV and respiratory bacterial pathogens promote enhanced inflammation and disease burden that exacerbate morbidity and mortality. We demonstrate that direct interactions between IAV and encapsulated bacteria commonly found in the respiratory tract promote environmental stability and infectivity of IAV. Antibiotic-mediated depletion of the respiratory bacterial flora abrogated IAV transmission in ferret models, indicating that these virus-bacterium interactions are operative for airborne transmission of IAV. Restoring IAV airborne transmission in antibiotic-treated ferrets by coinfection with Streptococcus pneumoniae confirmed a role for specific members of the bacterial respiratory community in promoting IAV transmission. These results implicate a role for the bacterial respiratory flora in promoting airborne transmission of IAV.IMPORTANCE Infection with influenza A virus (IAV), especially when complicated with a secondary bacterial infection, is a leading cause of global mortality and morbidity. Gaining a greater understanding of the transmission dynamics of IAV is important during seasonal IAV epidemics and in the event of a pandemic. Direct bacterium-virus interactions are a recently appreciated aspect of infectious disease biology. Direct interactions between IAV and specific bacterial species of the human upper respiratory tract were found to promote the stability and infectivity of IAV during desiccation stress. Viral environmental stability is an important aspect during transmission, suggesting a potential role for bacterial respiratory communities in IAV transmission. Airborne transmission of IAV was abrogated upon depletion of nasal bacterial flora with topical antibiotics. This defect could be functionally complemented by S. pneumoniae coinfection. These data suggest that bacterial coinfection may be an underappreciated aspect of IAV transmission dynamics.

13.
Obesity (Silver Spring) ; 28(9): 1631-1636, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32779401

RESUMO

OBJECTIVE: Individuals with obesity suffer from an increased susceptibility to severe respiratory viral infections and respond poorly to vaccinations, making it imperative to identify interventions. Recent evidence suggesting that obesity leads to tissue-specific vitamin A deficiency led to an investigation of whether high-dose oral vitamin A, a treatment used for remediating vitamin A deficiency in developing countries, could correct obesity-associated tissue deficits. METHODS: Adult C57BL/6 diet-induced obese mice were supplemented with vitamin A for 4 weeks. A subset of mice were then vaccinated with inactivated influenza virus and challenged. Following supplementation, tissue vitamin A levels, lung immune cell composition, blood inflammatory cytokines, antibody responses, and viral clearance were evaluated. RESULTS: Supplementation significantly improved vitamin A levels in lung and adipose tissues in diet-induced obese mice. Additionally, supplementation decreased inflammatory cytokines in the blood and altered the lung immune environment. Importantly, vaccinated, vitamin A-treated diet-induced obese mice exhibited improved antibody responses and significantly reduced viral loads post challenge compared with PBS-treated mice. CONCLUSIONS: Results demonstrate a low-cost intervention that may correct vitamin A tissue deficits and help control respiratory viral infections in individuals with obesity.


Assuntos
Influenza Humana/terapia , Obesidade/tratamento farmacológico , Vacinação/métodos , Vitamina A/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Vitamina A/farmacologia
14.
Nat Commun ; 11(1): 2097, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350281

RESUMO

Astroviruses are a global cause of pediatric diarrhea, but they are largely understudied, and it is unclear how and where they replicate in the gut. Using an in vivo model, here we report that murine astrovirus preferentially infects actively secreting small intestinal goblet cells, specialized epithelial cells that maintain the mucus barrier. Consequently, virus infection alters mucus production, leading to an increase in mucus-associated bacteria and resistance to enteropathogenic E. coli colonization. These studies establish the main target cell type and region of the gut for productive murine astrovirus infection. They further define a mechanism by which an enteric virus can regulate the mucus barrier, induce functional changes to commensal microbial communities, and alter host susceptibility to pathogenic bacteria.


Assuntos
Infecções por Astroviridae/patologia , Infecções por Astroviridae/virologia , Astroviridae/fisiologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/virologia , Células Caliciformes/virologia , Muco/virologia , Animais , Células Epiteliais/patologia , Células Epiteliais/virologia , Escherichia coli/fisiologia , Feminino , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Muco/microbiologia , Transcriptoma/genética , Replicação Viral/fisiologia , Eliminação de Partículas Virais/fisiologia
15.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31776285

RESUMO

Astroviruses (AstV) are a leading cause of diarrhea, especially in the very young, the elderly, and immunocompromised populations. Despite their significant impact on public health, no drug therapies for astrovirus have been identified. In this study, we fill this gap in knowledge and demonstrate that the FDA-approved broad-spectrum anti-infective drug nitazoxanide (NTZ) blocks astrovirus replication in vitro with a 50% effective concentration (EC50) of approximately 1.47 µM. It can be administered up to 8 h postinfection and is effective against multiple human astrovirus serotypes, including clinical isolates. Most importantly, NTZ reduces viral shedding in vivo, exhibiting its potential as a future clinical therapeutic.IMPORTANCE Human astroviruses (HAstV) are thought to cause between 2 and 9% of acute, nonbacterial diarrhea cases in children worldwide. HAstV infection can be especially problematic in immunocompromised people and infants, where the virus has been associated with necrotizing enterocolitis and severe and persistent diarrhea, as well as rare instances of systemic and fatal disease. And yet, no antivirals have been identified to treat astrovirus infection. Our study provides the first evidence that nitazoxanide may be an effective therapeutic strategy against astrovirus disease.


Assuntos
Infecções por Astroviridae/tratamento farmacológico , Mamastrovirus/efeitos dos fármacos , Tiazóis/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Infecções por Astroviridae/virologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Diarreia/virologia , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/virologia , Humanos , Mamastrovirus/imunologia , Nitrocompostos , Aves Domésticas , Replicação Viral/fisiologia
16.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30971471

RESUMO

Human astroviruses are single-stranded RNA enteric viruses that cause a spectrum of disease ranging from asymptomatic infection to systemic extragastrointestinal spread; however, they are among the least-characterized enteric viruses, and there is a lack of a well-characterized small animal model. Finding that immunocompromised mice were resistant to human astrovirus infection via multiple routes of inoculation, our studies aimed to determine whether murine astrovirus (MuAstV) could be used to model human astrovirus disease. We experimentally infected wild-type mice with MuAstV isolated from immunocompromised mice and found that the virus was detected throughout the gastrointestinal tract, including the stomach, but was not associated with diarrhea. The virus was also detected in the lung. Although virus levels were higher in recently weaned mice, the levels were similar in male and female adult mice. Using two distinct viruses isolated from different immunocompromised mouse strains, we observed virus strain-specific differences in the duration of infection (3 versus 10 weeks) in wild-type mice, indicating that the within-host immune pressure from donor mice shaped the virus kinetics in immunocompetent recipient hosts. Both virus strains elicited minimal pathology and a lack of sustained immunity. In summary, MuAstV represents a useful model for studying asymptomatic human infection and gaining insight into the astrovirus pathogenesis and immunity.IMPORTANCE Astroviruses are widespread in both birds and mammals; however, little is known about the pathogenesis and the immune response to the virus due to the lack of a well-characterized small-animal model. Here we describe two distinct strains of murine astrovirus that cause infections in immunocompetent mice that mirror aspects of asymptomatic human infections, including minimal pathology and short-lived immunity. However, we noted that the duration of infection differed greatly between the strains, highlighting an important facet of these viruses that was not previously appreciated. The ubiquitous nature and diversity of murine astroviruses coupled with the continuous likelihood of reinfection raise the possibility of viral interference with other mouse models of disease.


Assuntos
Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Astroviridae/isolamento & purificação , Astroviridae/patogenicidade , Hospedeiro Imunocomprometido/imunologia , Fatores Etários , Animais , Astroviridae/classificação , Infecções por Astroviridae/patologia , Diarreia/virologia , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/patologia , Trato Gastrointestinal/virologia , Imunidade , Intestino Delgado/patologia , Intestino Delgado/virologia , Masculino , Mamastrovirus , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Receptor de Interferon alfa e beta/genética , Fatores Sexuais , Baço/virologia , Replicação Viral
17.
Emerg Microbes Infect ; 8(1): 479-485, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30924394

RESUMO

In late 2016, an H7N6 low pathogenic avian influenza virus outbreak occurred in domestic turkeys in Central Chile. We characterized the genetic and antigenic properties of the outbreak virus and its experimental transmission in chickens. Our studies demonstrate that the outbreak virus is a reassortment of genes identified from Chilean wild bird viruses between 2013 and 2017 and displays molecular adaptations to poultry and antiviral resistance to adamantanes. Further, these wild bird viruses are also able to transmit in experimentally infected chickens highlighting the need for continued surveillance and improvement of biosecurity in poultry farms.


Assuntos
Surtos de Doenças , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Adamantano/farmacologia , Adaptação Biológica , Animais , Animais Domésticos , Antivirais/farmacologia , Chile/epidemiologia , Farmacorresistência Viral , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Perus
18.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30381485

RESUMO

Obese individuals are considered a high-risk group for developing severe influenza virus infection. While the exact mechanisms for increased disease severity remain under investigation, obese-mouse models suggest that increased acute lung injury (ALI), potentially due to enhanced viral spread and decreased wound repair, is likely involved. We previously demonstrated that upregulation of the lung epithelial cell ß6 integrin during influenza virus infection was involved in disease severity. Knocking out ß6 (ß6 KO) resulted in improved survival. Of interest, obese mice have increased lung ß6 integrin levels at homeostasis. Thus, we hypothesized that the protective effect seen in ß6 KO mice would extend to the highly susceptible obese-mouse model. In the current study, we show that crossing ß6 KO mice with genetically obese (ob/ob) mice (OBKO) resulted in reduced ALI and impaired viral spread, like their lean counterparts. Mechanistically, OBKO alveolar macrophages and epithelial cells had increased type I interferon (IFN) signaling, potentially through upregulated type I IFN receptor expression, which was important for the enhanced protection during infection. Taken together, our results indicate that the absence of an epithelial integrin can beneficially alter the pulmonary microenvironment by increasing protective type I IFN responses even in a highly susceptible obese-mouse model. These studies increase our understanding of influenza virus pathogenesis in high-risk populations and may lead to the development of novel therapies.IMPORTANCE Obesity is a risk factor for developing severe influenza virus infection. However, the reasons for this are unknown. We found that the lungs of obese mice have increased expression of the epithelial integrin ß6, a host factor associated with increased disease severity. Knocking out integrin ß6 in obese mice favorably altered the pulmonary environment by increasing type I IFN signaling, resulting in decreased viral spread, reduced lung injury, and increased survival. This study furthers our understanding of influenza virus pathogenesis in the high-risk obese population and may potentially lead to the development of novel therapies for influenza virus infection.


Assuntos
Lesão Pulmonar Aguda/virologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Cadeias beta de Integrinas/genética , Obesidade/complicações , Infecções por Orthomyxoviridae/imunologia , Lesão Pulmonar Aguda/imunologia , Animais , Modelos Animais de Doenças , Cães , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Interferon Tipo I/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Infecções por Orthomyxoviridae/genética , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Índices de Gravidade do Trauma
19.
Methods Mol Biol ; 1836: 431-459, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151586

RESUMO

To streamline standard virological assays, we developed bioluminescent replication-competent influenza reporter viruses that mimic their parental counterparts. These reporter viruses provide a rapid and quantitative readout of viral infection and replication. Moreover, they permit real-time in vivo measures of viral load, tissue distribution, and transmission in the same cohort of animals over the entire course of infection-measurements that were not previously possible. Here we provide detailed protocols using bioluminescent reporter viruses for in vivo imaging in mice and ferrets. We also describe cell culture-based techniques using reporter viruses for quantification of viral titers and performing microneutralization assays. The ease, speed, and adaptability of these approaches have the potential to accelerate multiple areas of influenza virus research.


Assuntos
Genes Reporter , Medições Luminescentes , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/fisiologia , Replicação Viral , Animais , Linhagem Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Furões , Humanos , Medições Luminescentes/métodos , Masculino , Camundongos , Testes de Neutralização , Carga Viral
20.
Nat Commun ; 6: 6378, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25744559

RESUMO

Influenza transmission efficiency in ferrets is vital for risk-assessment studies. However, the inability to monitor viral infection and transmission dynamics in real time only provides a glimpse into transmissibility. Here we exploit a replication-competent influenza reporter virus to investigate dynamics of infection/transmission in ferrets. Bioluminescent imaging of ferrets infected with A/California/04/2009 H1N1 virus (CA/09) encoding NanoLuc (NLuc) luciferase provides the first real-time snapshot of influenza infection/transmission. Luminescence in the respiratory tract and in less well-characterized extra-pulmonary sites is observed, and imaging identifies infections in animals that would have otherwise been missed by traditional methods. Finally, the reporter virus significantly increases the speed and sensitivity of virological and serological assays. Thus, bioluminescent imaging of influenza infections rapidly determines intra-host dissemination, inter-host transmission and viral load, revealing infection dynamics and pandemic potential of the virus. These results have important implications for antiviral drug susceptibility, vaccine efficacy, transmissibility and pathogenicity studies.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Medições Luminescentes/métodos , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/transmissão , Sistema Respiratório/virologia , Animais , Furões , Testes de Inibição da Hemaglutinação , Luciferases , Testes de Neutralização , Genética Reversa , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...