Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 130(5): 329-334, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941410

RESUMO

Sexual selection on fitness-determining traits should theoretically erode genetic variance and lead to low heritability. However, many sexually selected traits maintain significant phenotypic and additive genetic variance, with explanations for this "lek paradox" including genic capture due to condition-dependence, and breaks on directional selection due to environmental sources of variance including maternal effects. Here we investigate genetic and environmental sources of variance in the intrasexually selected green badge of the sand lizard (Lacerta agilis). The badge functions as a cue to male fighting ability in this species, and male-male interactions determine mate acquisition. Using animal models on a pedigree including three generations of males measured over an extensive 9-year field study, we partition phenotypic variance in both badge size and body condition into additive genetic, maternal, and permanent environmental effects experienced by an individual over its lifespan. Heritability of badge size was 0.33 with a significant estimate of underlying additive genetic variance. Body condition was strongly environmentally determined in this species and did not show either significant additive genetic variance or heritability. Neither badge size nor body condition was responsive to maternal effects. We propose that the lack of additive genetic variance and heritability of body condition makes it unlikely that genic capture mechanisms maintain additive genetic variance for badge size. That said, genic capture was originally proposed for male traits under female choice, not agonistic selection. If developmental pathways generating variance in body condition, and/or the covarying secondary sex trait, differ between inter- and intrasexual selection, or the rate at which their additive genetic variance or covariance is depleted, future work may show whether genic capture is largely restricted to intersexual selection processes.


Assuntos
Lagartos , Comportamento Sexual Animal , Animais , Masculino , Feminino , Reprodução , Lagartos/genética , Variação Genética
2.
Ecology ; 101(10): e03136, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691871

RESUMO

As the earth warms, populations will be faced with novel environments to which they may not be adapted. In the short term, populations can be buffered against the negative effects, or maximize the beneficial effects, of such environmental change via phenotypic plasticity and, in the longer term, via adaptive evolution. However, the extent and direction of these population-level responses will be dependent on the degree to which responses vary among the individuals within them (i.e., within population variation in plasticity), which is, itself, likely to vary among populations. Despite this, we have estimates of among-individual variation in plastic responses across multiple populations for only a few systems. This lack of data limits our ability to predict the consequences of environmental change for population and species persistence accurately. Here, we utilized a 16-yr data set from climatically distinct populations of the viviparous skink Niveoscincus ocellatus tracking over 1,200 litters from more than 600 females from each population to examine inter- and intrapopulation variability in the response of parturition date to environmental temperature. We found that these populations share a common population-mean reaction norm but differ in the degree to which reaction norms vary among individuals. These results suggest that even where populations share a common mean-level response, we cannot assume that they will be affected similarly by altered environmental conditions. If we are to assess how changing climates will impact species and populations accurately, we require estimates of how plastic responses vary both among and within populations.


Assuntos
Lagartos , Adaptação Fisiológica , Animais , Clima , Mudança Climática , Feminino , Humanos , Temperatura
3.
BMC Evol Biol ; 15: 206, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446705

RESUMO

BACKGROUND: Present-day climate change has altered the phenology (the timing of periodic life cycle events) of many plant and animal populations worldwide. Some of these changes have been adaptive, leading to an increase in population fitness, whereas others have been associated with fitness decline. Representing short-term responses to an altered weather regime, hitherto observed changes are largely explained by phenotypic plasticity. However, to track climatically induced shifts in optimal phenotype as climate change proceeds, evolutionary capacity in key limiting climate- and fitness-related traits is likely to be crucial. In order to produce realistic predictions about the effects of climate change on species and populations, a main target for conservation biologists is thus to assess the potential of natural populations to respond by these two mechanisms. In this study we use a large 15-year dataset on an ectotherm model, the Swedish sand lizard (Lacerta agilis), to investigate how higher spring temperature is likely to affect oviposition timing in a high latitude population, a trait strongly linked to offspring fitness and survival. RESULTS: With an interest in both the short- and potential long-term effect of rising temperatures, we applied a random regression model, which yields estimates of population-level plasticity and among-individual variation in the average, as well as the plastic, response to temperature. Population plasticity represents capacity for short-term adjustments whereas variation among individuals in a fitness-related trait indicates an opportunity for natural selection and hence for evolutionary adaptation. The analysis revealed both population-level plasticity and individual-level variation in average laying date. In contrast, we found no evidence for variation among females in their plastic responses to spring temperature, which could demonstrate a similarity in responses amongst females, but may also be due to a lack of statistical power to detect such an effect. CONCLUSION: Our findings indicate that climate warming may have positive fitness effects in this lizard population through an advancement of oviposition date. This prediction is consistent over shorter and potentially also longer time scales as the analysis revealed both population-level plasticity and individual-level variation in average laying date. However, the genetic basis for this variation would have to be examined in order to predict an evolutionary response.


Assuntos
Mudança Climática , Lagartos/fisiologia , Aclimatação , Animais , Evolução Biológica , Feminino , Lagartos/genética , Oviposição , Estações do Ano , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...