Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 17(1): e20303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36740755

RESUMO

Genetic diversity reflects the survival potential, history, and population dynamics of an organism. It underlies the adaptive potential of populations and their response to environmental change. Reaumuria trigyna is an endemic species in the Eastern Alxa and West Ordos desert regions in China. The species has been considered a good candidate to explore the unique survival strategies of plants that inhabit this area. In this study, we performed population genomic analyses based on restriction-site associated DNA sequencing to understand the genetic diversity, population genetic structure, and differentiation of the species. Analyses of 92,719 high-quality single-nucleotide polymorphisms (SNPs) indicated that overall genetic diversity of R. trigyna was low (HO = 0.249 and HE = 0.208). No significant genetic differentiation was observed among the investigated populations. However, a subtle population genetic structure was detected. We suggest that this might be explained by adaptive diversification reinforced by the geographical isolation of populations. Overall, 3513 outlier SNPs were located in 243 gene-coding sequences in the R. trigyna transcriptome. Potential sites under diversifying selection occurred in genes (e.g., AP2/EREBP, E3 ubiquitin-protein ligase, FLS, and 4CL) related to phytohormone regulation and synthesis of secondary metabolites which have roles in adaptation of species. Our genetic analyses provide scientific criteria for evaluating the evolutionary capacity of R. trigyna and the discovery of unique adaptions. Our findings extend knowledge of refugia, environmental adaption, and evolution of germplasm resources that survive in the Ordos area.


Assuntos
Genômica , Metagenômica , Análise de Sequência de DNA , China
2.
iScience ; 26(9): 107462, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636074

RESUMO

One Biosecurity is an interdisciplinary approach to policy and research that builds on the interconnections between human, animal, plant, and ecosystem health to effectively prevent and mitigate the impacts of invasive alien species. To support this approach requires that key cross-sectoral research innovations be identified and prioritized. Following an interdisciplinary horizon scan for emerging research that underpins One Biosecurity, four major interlinked advances were identified: implementation of new surveillance technologies adopting state-of-the-art sensors connected to the Internet of Things, deployable handheld molecular and genomic tracing tools, the incorporation of wellbeing and diverse human values into biosecurity decision-making, and sophisticated socio-environmental models and data capture. The relevance and applicability of these innovations to address threats from pathogens, pests, and weeds in both terrestrial and aquatic ecosystems emphasize the opportunity to build critical mass around interdisciplinary teams at a global scale that can rapidly advance science solutions targeting biosecurity threats.

3.
Genome Biol Evol ; 14(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35420669

RESUMO

Members of the Peronosporaceae (Oomycota, Chromista), which currently consists of 25 genera and approximately 1,000 recognized species, are responsible for disease on a wide range of plant hosts. Molecular phylogenetic analyses over the last two decades have improved our understanding of evolutionary relationships within Peronosporaceae. To date, 16 numbered and three named clades have been recognized; it is clear from these studies that the current taxonomy does not reflect evolutionary relationships. Whole organelle genome sequences are an increasingly important source of phylogenetic information, and in this study, we present comparative and phylogenetic analyses of mitogenome sequences from 15 of the 19 currently recognized clades of Peronosporaceae, including 44 newly assembled sequences. Our analyses suggest strong conservation of mitogenome size and gene content across Peronosporaceae but, as previous studies have suggested, limited conservation of synteny. Specifically, we identified 28 distinct syntenies amongst the 71 examined isolates. Moreover, 19 of the isolates contained inverted or direct repeats, suggesting repeated sequences may be more common than previously thought. In terms of phylogenetic relationships, our analyses of 34 concatenated mitochondrial gene sequences resulted in a topology that was broadly consistent with previous studies. However, unlike previous studies concatenated mitochondrial sequences provided strong support for higher-level relationships within the family.


Assuntos
Genoma Mitocondrial , Oomicetos , Evolução Molecular , Genes Mitocondriais , Oomicetos/genética , Filogenia , Sintenia
4.
Front Microbiol ; 13: 1012867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605510

RESUMO

Bacteria are well known producers of bioactive secondary metabolites, including some of the most effective antibiotics in use today. While the caves of Oceania are still largely under-explored, they form oligotrophic and extreme environments that are a promising source for identifying novel species of bacteria with biologically active compounds. By using selective media that mimicked a cave environment, and pretreatments that suppressed the growth of fast-growing bacteria, we have cultured genetically diverse bacteria from a limestone cave in Fiji. Partial 16S rRNA gene sequences from isolates were determined and compared with 16S rRNA gene sequences in EzBioCloud and SILVA data bases. Fifty-five isolates purified from culture had Actinomycete-like morphologies and these were investigated for antibacterial activity. Initial screening using a cross streak test with pathogenic bacteria indicated that 34 of the isolates had antibacterial properties. The best matches for the isolates are bacteria with potential uses in the manufacture of antibiotics and pesticides, in bioremediation of toxic waste, in biomining, in producing bioplastics, and in plant growth promotion. Nineteen bacteria were confirmed as Actinomycetes. Thirteen were from the genus Streptomyces and six from genera considered to be rare Actinomycetes from Pseudonocardia, Kocuria, Micromonospora, Nonomuraea. Ten isolates were Firmicutes from the genera Bacillus, Lysinbacillus, Psychrobacillus and Fontibacillus. Two were Proteobacteria from the genera Mesorhizobium and Cupriavidus. Our findings identify a potentially rich source of microbes for applications in biotechnologies.

5.
Front Plant Sci ; 13: 1095359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699852

RESUMO

Increasing water-soluble carbohydrate (WSC) content in white clover is important for improving nutritional quality and reducing environmental impacts from pastoral agriculture. Elucidation of genes responsible for foliar WSC variation would enhance genetic improvement by enabling molecular breeding approaches. The aim of the present study was to identify single nucleotide polymorphisms (SNPs) associated with variation in foliar WSC in white clover. A set of 935 white clover individuals, randomly sampled from five breeding pools selectively bred for divergent (low or high) WSC content, were assessed with 14,743 genotyping-by-sequencing SNPs, using three outlier detection methods: PCAdapt, BayeScan and KGD-FST. These analyses identified 33 SNPs as discriminating between high and low WSC populations and putatively under selection. One SNP was located in the intron of ERD6-like 4, a gene coding for a sugar transporter located on the vacuole membrane. A genome-wide association study using a subset of 605 white clover individuals and 5,757 SNPs, identified a further 12 SNPs, one of which was associated with a starch biosynthesis gene, glucose-1-phosphate adenylyltransferase, glgC. Our results provide insight into genomic regions underlying WSC accumulation in white clover, identify candidate genomic regions for further functional validation studies, and reveal valuable information for marker-assisted or genomic selection in white clover.

6.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769324

RESUMO

Organisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is a representative species for studying the grazing effect on typical steppe plants in the Inner Mongolia Plateau. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Here, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. As a result, a total of 2357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified in RNA-Seq and qRT-PCR analyses that indicated the modulation of the Calvin-Benson cycle and photorespiration metabolic pathways. The key gene expression profiles encoding various proteins (e.g., ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase, etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection and identifying important questions to address in future transcriptome studies.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Herbivoria , Proteínas de Plantas/metabolismo , Poaceae/genética , Transcriptoma , Animais , Pradaria , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Ovinos
7.
Emerg Infect Dis ; 27(11): 2847-2855, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670644

RESUMO

Multidrug resistance is a major threat to global elimination of tuberculosis (TB). We performed phenotypic drug-susceptibility testing and whole-genome sequencing for 309 isolates from 342 consecutive patients who were given a diagnosis of TB in Yangon, Myanmar, during July 2016‒June 2018. We identified isolates by using the GeneXpert platform to evaluate drug-resistance profiles. A total of 191 (62%) of 309 isolates had rifampin resistance; 168 (88%) of these rifampin-resistant isolates were not genomically related, indicating the repeated emergence of resistance in the population, rather than extensive local transmission. We did not detect resistance mutations to new oral drugs, including bedaquiline and pretomanid. The current GeneXpert MTB/RIF system needs to be modified by using the newly launched Xpert MTB/XDR cartridge or line-probe assay. Introducing new oral drugs to replace those currently used in treatment regimens for multidrug-resistant TB will also be useful for treating TB in Myanmar.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Farmacorresistência Bacteriana , Genômica , Humanos , Testes de Sensibilidade Microbiana , Mianmar/epidemiologia , Mycobacterium tuberculosis/genética , Rifampina , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
8.
PLoS One ; 16(5): e0250422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019564

RESUMO

Phytophthora agathidicida is associated with a root rot that threatens the long-term survival of the iconic New Zealand kauri. Although it is widely assumed that this pathogen arrived in New Zealand post-1945, this hypothesis has yet to be formally tested. Here we describe evolutionary analyses aimed at evaluating this and two alternative hypotheses. As a basis for our analyses, we assembled complete mitochondrial genome sequences from 16 accessions representing the geographic range of P. agathidicida as well as those of five other members of Phytophthora clade 5. All 21 mitogenome sequences were very similar, differing little in size with all sharing the same gene content and arrangement. We first examined the temporal origins of genetic diversity using a pair of calibration schemes. Both resulted in similar age estimates; specifically, a mean age of 303.0-304.4 years and 95% HPDs of 206.9-414.6 years for the most recent common ancestor of the included isolates. We then used phylogenetic tree building and network analyses to investigate the geographic distribution of the genetic diversity. Four geographically distinct genetic groups were recognised within P. agathidicida. Taken together the inferred age and geographic distribution of the sampled mitogenome diversity suggests that this pathogen diversified following arrival in New Zealand several hundred to several thousand years ago. This conclusion is consistent with the emergence of kauri dieback disease being a consequence of recent changes in the relationship between the pathogen, host, and environment rather than a post-1945 introduction of the causal pathogen into New Zealand.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Phytophthora/genética , Doenças das Plantas/estatística & dados numéricos , Araucariaceae/microbiologia , Nova Zelândia , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Polimorfismo Genético
9.
Ecol Evol ; 10(23): 13530-13543, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304557

RESUMO

As an ancient clonal root and leaf crop, taro (Colocasia esculenta, Araceae) is highly polymorphic with uncertain genetic and geographic origins. We explored chloroplast DNA diversity in cultivated and wild taros, and closely related wild taxa, and found cultivated taro to be polyphyletic, with tropical and temperate clades that appear to originate in Southeast Asia sensu lato. A third clade was found exclusively in wild populations from Southeast Asia to Australia and Papua New Guinea. Our findings do not support the hypothesis of taro domestication in Papua New Guinea, despite archaeological evidence for early use or cultivation there, and the presence of apparently natural wild populations in the region (Australia and Papua New Guinea).

10.
Genes (Basel) ; 11(3)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197402

RESUMO

Tetraena mongolica is a xerophytic shrub endemic to desert regions in Inner Mongolia. This species has evolved distinct survival strategies that allow it to adapt to hyper-drought and heterogeneous habitats. Simple sequence repeats (SSRs) may provide a molecular basis in plants for fast adaptation to environmental change. Thus, identifying SSRs and their possible effects on gene behavior has the potential to provide valuable information for studies of adaptation. In this study, we sequenced six individual transcriptomes of T. mongolica from heterogeneous habitats, focused on SSRs located in genes, and identified 811 polymorphic SSRs. Of the identified SSRs, 172, 470, and 76 were located in 5' UTRs, CDSs, and 3' UTRs in 591 transcripts; and AG/CT, AAC/GTT, and AT/AT were the most abundant repeats in each gene region. Functional annotation showed that many of the identified polymorphic SSRs were in genes that were enriched in several GO terms and KEGG pathways, suggesting the functional significance of these genes in the environmental adaptation process. The identification of polymorphic genic SSRs in our study lays a foundation for future studies investigating the contribution of SSRs to regulation of genes in natural populations of T. mongolica and their importance for adaptive evolution of this species.


Assuntos
Adaptação Fisiológica , Repetições de Microssatélites , Transcriptoma , Zygophyllaceae/genética , Ecossistema , Evolução Molecular , Polimorfismo Genético
11.
PLoS One ; 15(1): e0224007, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978166

RESUMO

The root rot causing oomycete, Phytophthora agathidicida, threatens the long-term survival of the iconic New Zealand kauri. Currently, testing for this pathogen involves an extended soil bioassay that takes 14-20 days and requires specialised staff, consumables, and infrastructure. Here we describe a loop-mediated isothermal amplification (LAMP) assay for the detection of P. agathidicida that targets a portion of the mitochondrial apocytochrome b coding sequence. This assay has high specificity and sensitivity; it did not cross react with a range of other Phytophthora isolates and detected as little as 1 fg of total P. agathidicida DNA or 116 copies of the target locus. Assay performance was further investigated by testing plant tissue baits from flooded soil samples using both the extended soil bioassay and LAMP testing of DNA extracted from baits. In these comparisons, P. agathidicida was detected more frequently using the LAMP test. In addition to greater sensitivity, by removing the need for culturing, the hybrid baiting plus LAMP approach is more cost effective than the extended soil bioassay and, importantly, does not require a centralised laboratory facility with specialised staff, consumables, and equipment. Such testing will allow us to address outstanding questions about P. agathidicida. For example, the hybrid approach could enable monitoring of the pathogen beyond areas with visible disease symptoms, allow direct evaluation of rates and patterns of spread, and allow the effectiveness of disease control to be evaluated. The hybrid LAMP bioassay also has the potential to empower local communities to evaluate the pathogen status of local kauri stands, providing information for disease management and conservation initiatives.


Assuntos
Araucariaceae/microbiologia , Phytophthora/genética , Doenças das Plantas/microbiologia , Microbiologia do Solo , Araucariaceae/genética , Bioensaio , DNA de Plantas/genética , Nova Zelândia , Phytophthora/isolamento & purificação , Phytophthora/patogenicidade , Doenças das Plantas/genética
12.
Am J Bot ; 106(10): 1365-1376, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31545874

RESUMO

PREMISE: Spore-bearing plants are capable of dispersing very long distances. However, it is not known if gene flow can prevent genetic divergence in widely distributed taxa. Here we address this issue, and examine systematic relationships at a global geographic scale for the fern genus Pteridium. METHODS: We sampled plants from 100 localities worldwide, and generated nucleotide data from four nuclear genes and two plastid regions. We also examined 2801 single nucleotide polymorphisms detected by a restriction site-associated DNA approach. RESULTS: We found evidence for two distinct diploid species and two allotetraploids between them. The "northern" species (Pteridium aquilinum) has distinct groups at the continental scale (Europe, Asia, Africa, and North America). The northern European subspecies pinetorum appears to involve admixture among all of these. A sample from the Hawaiian Islands contained elements of both North American and Asian P. aquilinum. The "southern" species, P. esculentum, shows little genetic differentiation between South American and Australian samples. Components of African genotypes are detected on all continents. CONCLUSIONS: We find evidence of distinct continental-scale genetic differentiation in Pteridium. However, on top of this is a clear signal of recent hybridization. Thus, spore-bearing plants are clearly capable of extensive long-distance gene flow; yet appear to have differentiated genetically at the continental scale. Either gene flow in the past was at a reduced level, or vicariance is possible even in the face of long-distance gene flow.


Assuntos
Gleiquênias , Pteridium , África , Ásia , Austrália , Europa (Continente) , Havaí , América do Norte
13.
Genes (Basel) ; 10(2)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709012

RESUMO

Metagenomics can be used to identify potential biocontrol agents for invasive species and was used here to identify candidate species for biocontrol of an invasive club moss in New Zealand. Profiles were obtained for Selaginella kraussiana collected from nine geographically disjunct locations in Northern New Zealand. These profiles were distinct from those obtained for the exotic club moss Selaginella moellendorffii and the native club mosses Lycopodium deuterodensum and Lycopodium volubile also collected in Northern New Zealand. Fungi and bacteria implicated elsewhere in causing plant disease were identified on plants of Selaginella that exhibited signs of necrosis. Most notably, high densities of sequence reads from Xanthomonas translucens and Pseudomonas syringae were associated with some populations of Selaginella but not Lycopodium. Since these bacteria are already in use as biocontrol agents elsewhere, further investigation into their potential as biocontrol of Selaginella in New Zealand is suggested.


Assuntos
Metagenoma , Selaginellaceae/genética , Espécies Introduzidas , Pseudomonas syringae/patogenicidade , Selaginellaceae/microbiologia , Controle de Plantas Daninhas/métodos , Xanthomonas/patogenicidade
14.
Data Brief ; 21: 354-357, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30364728

RESUMO

This article contains microbiome data from the upper respiratory tract of patients living with HIV/TB, HIV and TB from Meiktila, a town in Myanmar where there is a high incidence of HIV and TB. Microbiomes were compared for HIV/TB infected and healthy adults from the same population. We collected nasopharyngeal and oropharyngeal swabs from a total of 33 participants (Healthy {5}, HIV/TB {8}, HIV {14}, and TB {6}). DNA was extracted from the swabs and subjected to custom single step 16s rRNA sequencing on an Illumina MiSeq platform. The sequencing data is available via http://www.ncbi.nlm.nih.gov/bioproject/ PRJNA432583.

15.
Genome Biol Evol ; 10(5): 1198-1209, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718211

RESUMO

In prokaryotes, known mechanisms of lateral gene transfer (transformation, transduction, conjugation, and gene transfer agents) generate new combinations of genes among chromosomes during evolution. In eukaryotes, whose host lineage is descended from archaea, lateral gene transfer from organelles to the nucleus occurs at endosymbiotic events. Recent genome analyses studying gene distributions have uncovered evidence for sporadic, discontinuous events of gene transfer from bacteria to archaea during evolution. Other studies have used traditional models designed to investigate gene family size evolution (Count) to support claims that gene transfer to archaea was continuous during evolution, rather than involving occasional periodic mass gene influx events. Here, we show that the methodology used in analyses favoring continuous gene transfers to archaea was misapplied in other studies and does not recover known events of single simultaneous origin for many genes followed by differential loss in real data: plastid genomes. Using the same software and the same settings, we reanalyzed presence/absence pattern data for proteins encoded in plastid genomes and for eukaryotic protein families acquired from plastids. Contrary to expectations under a plastid origin model, we found that the methodology employed inferred that gene acquisitions occurred uniformly across the plant tree. Sometimes as many as nine different acquisitions by plastid DNA were inferred for the same protein family. That is, the methodology that recovered gradual and continuous lateral gene transfer among lineages for archaea obtains the same result for plastids, even though it is known that massive gains followed by gradual differential loss is the true evolutionary process that generated plastid gene distribution data. Our findings caution against the use of models designed to study gene family size evolution for investigating gene transfer processes, especially when transfers involving more than one gene per event are possible.


Assuntos
Biologia Computacional/normas , Evolução Molecular , Transferência Genética Horizontal , Filogenia , Plastídeos/classificação , Plastídeos/genética , Archaea/genética , Proteínas de Cloroplastos/genética , Eucariotos/genética , Genomas de Plastídeos , Genômica , Modelos Genéticos , Software , Simbiose/genética , Estudos de Validação como Assunto
16.
PLoS One ; 11(3): e0152455, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27011209

RESUMO

We use chloroplast DNA sequencing to examine aspects of the pre-European Maori cultivation of an endemic New Zealand root crop, Arthropodium cirratum (rengarenga). Researching the early stages of domestication is not possible for the majority of crops, because their cultivation began many thousands of years ago and/or they have been substantially altered by modern breeding methods. We found high levels of genetic variation and structuring characterised the natural distribution of A. cirratum, while the translocated populations only retained low levels of this diversity, indicating a strong bottleneck even at the early stages of this species' cultivation. The high structuring detected at four chloroplast loci within the natural A. cirratum range enabled the putative source(s) of the translocated populations to be identified as most likely located in the eastern Bay of Plenty/East Cape region. The high structuring within A. cirratum also has implications for the conservation of genetic diversity within this species, which has undergone recent declines in both its natural and translocated ranges.


Assuntos
DNA de Cloroplastos/genética , Liliaceae/genética , Plantas Medicinais/genética , DNA de Plantas/genética , Variação Genética , Geografia , Haplótipos , Nova Zelândia , Nucleotídeos/genética , Filogeografia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
17.
Genome Biol Evol ; 8(5): 1299-315, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27017528

RESUMO

We introduce a gene tree simulator that is designed for use in conjunction with approximate Bayesian computation approaches. We show that it can be used to determine the relative importance of hybrid speciation and introgression compared with incomplete lineage sorting (ILS) in producing patterns of incongruence across gene trees. Important features of the new simulator are (1) a choice of models to capture the decreasing probability of successful hybrid species formation or introgression as a function of genetic distance between potential parent species; (2) the ability for hybrid speciation to result in asymmetrical contributions of genetic material from each parent species; (3) the ability to vary the rates of hybrid speciation, introgression, and divergence speciation in different epochs; and (4) incorporation of the coalescent, so that patterns of incongruence due to ILS can be compared with those due to hybrid evolution. Given a set of gene trees generated by the simulator, we calculate a set of statistics, each measuring in a different way the discordance between the gene trees. We show that these statistics can be used to differentiate whether the gene tree discordance was largely due to hybridization, or only due to lineage sorting.


Assuntos
Simulação por Computador , Fluxo Gênico , Especiação Genética , Hibridização Genética , Modelos Genéticos , Teorema de Bayes , Evolução Molecular , Humanos , Filogenia
18.
Nature ; 524(7566): 427-32, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26287458

RESUMO

Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.


Assuntos
Eucariotos/genética , Evolução Molecular , Modelos Genéticos , Organelas/genética , Simbiose/genética , Archaea/genética , Bactérias/genética , Análise por Conglomerados , Eucariotos/classificação , Células Eucarióticas/metabolismo , Transferência Genética Horizontal/genética , Genoma/genética , Mitocôndrias/genética , Filogenia , Plastídeos/genética , Células Procarióticas/metabolismo , Proteoma/genética , Fatores de Tempo
19.
Syst Biol ; 63(2): 192-202, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335427

RESUMO

Adaptive radiations such as the Darwin finches in the Galapagos or the cichlid fishes from the Eastern African Great Lakes have been a constant source of inspiration for biologists and a stimulus for evolutionary thinking. A central concept behind adaptive radiation is that of evolution by niche shifts, or ecological speciation. Evidence for adaptive radiations generally requires a strong correlation between phenotypic traits and the environment. But adaptive traits are often cryptic, hence making this phenotype-environment approach difficult to implement. Here we propose a procedure for detecting adaptive radiation that focuses on species' ecological niche comparisons. It evaluates whether past ecological disparity in a group fits better a neutral Brownian motion model of ecological divergence or a niche shift model. We have evaluated this approach on New Zealand rockcresses (Pachycladon) that recently radiated in the New Zealand Alps. We show that the pattern of ecological divergence rejects the neutral model and is consistent with that of a niche shift model. Our approach to detect adaptive radiation has the advantage over alternative approaches that it focuses on ecological niches, a key concept behind adaptive radiation. It also provides a way to evaluate the importance of ecological speciation in adaptive radiations and will have general application in evolutionary studies. In the case of Pachycladon, the high estimated diversification rate, the distinctive ecological niches of species, and the evidence for ecological speciation suggest a remarkable example of adaptive radiation.


Assuntos
Brassicaceae/classificação , Meio Ambiente , Filogenia , Adaptação Fisiológica , Biodiversidade , Nova Zelândia
20.
Brief Bioinform ; 14(5): 575-88, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23677899

RESUMO

There is much interest in using high-throughput DNA sequencing methodology to monitor microorganisms, complex plant and animal communities. However, there are experimental and analytical issues to consider before applying a sequencing technology, which was originally developed for genome projects, to ecological projects. Many of these issues have been highlighted by recent microbial studies. Understanding how high-throughput sequencing is best implemented is important for the interpretation of recent results and the success of future applications. Addressing complex biological questions with metagenomics requires the interaction of researchers who bring different skill sets to problem solving. Educators can help by nurturing a collaborative interdisciplinary approach to genome science, which is essential for effective problem solving. Educators are in a position to help students, teachers, the public and policy makers interpret the new knowledge that metagenomics brings. To do this, they need to understand, not only the excitement of the science but also the pitfalls and shortcomings of methodology and research designs. We review these issues and some of the research directions that are helping to move the field forward.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Algoritmos , Animais , Biologia Computacional/educação , Bases de Dados Genéticas/estatística & dados numéricos , Ecossistema , Metagenômica/estatística & dados numéricos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...