Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Toxicon ; 249: 108055, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097104

RESUMO

A useful approach to deepen our knowledge about the origin and evolution of venom systems in Reptilia has been exploring the vast biodiversity of this clade of vertebrates in search of orally produced proteins with toxic actions, as well as their corresponding delivery systems. The occurrence of toxins in anguimorph lizards has been demonstrated experimentally or inferred from reports of the toxic effects of the oral secretions of taxa within the Varanidae and Helodermatidae families. In the present study, we have focused on two alligator lizards of the Anguidae family, the Mexican alligator lizard, Abronia graminea, and the red-lipped arboreal alligator lizard, A. lythrochila. In addition, the fine morphology of teeth of the latter species is described. The presence of a conserved set of proteins, including B-type natriuretic peptides, cysteine-rich secretory proteins, group III phospholipase A2, and kallikrein, in submandibular gland extracts was demonstrated for both Abronia species. These proteins belong to toxin families found in oral gland secretions of venomous reptile species. This finding, along with previous demonstration of toxin-producing taxa in both paleo- and neoanguimorpha clades, provides further support for the existence of a handful of conserved toxin families in oral secretions across the 100+ million years of Anguimorpha cladogenesis.

2.
Chem Biol Interact ; : 111217, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197813

RESUMO

Snake venoms are a complex mixture of proteins and polypeptides that represent a valuable source of potential molecular tools for understanding physiological processes for the development of new drugs. In this study two major PLA2s, named PLA2-I (Asp49) and PLA2-II (Lys49), isolated from the venom of Bothrops diporus from Northeastern Argentina, have shown cytotoxic effects on LM3 murine mammary tumor cells, with PLA2-II-like exhibiting a stronger effect compared to PLA2-I. At sub-cytotoxic levels, both PLA2s inhibited adhesion, migration, and invasion of these adenocarcinoma cells. Moreover, these toxins hindered tubulogenesis in endothelial cells, implicating a potential role in inhibiting tumor angiogenesis. All these inhibitory effects were more pronounced for the catalytically-inactive toxin. Additionally, in silico studies strongly suggest that this PLA2-II-like myotoxin could effectively block fibronectin binding to the integrin receptor, offering a dual advantage over PLA2-I in interacting with the αVß3 integrin. In conclusion, this study reports for the first time, integrating both in vitro and in silico approaches, a comparative analysis of the antimetastatic and antiangiogenic potential effects of two isoforms, an Asp49 PLA2-I and a Lys49 PLA2-II-like, both isolated from Bothrops diporus venom.

3.
Structure ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39146931

RESUMO

Immunoglobulin G (IgG) antibodies that bind their cognate antigen in a pH-dependent manner (acid-switched antibodies) can release their bound antigen for degradation in the acidic environment of endosomes, while the IgGs are rescued by the neonatal Fc receptor (FcRn). Thus, such IgGs can neutralize multiple antigens over time and therefore be used at lower doses than their non-pH-responsive counterparts. Here, we show that light-chain shuffling combined with phage display technology can be used to discover IgG1 antibodies with increased pH-dependent antigen binding properties, using the snake venom toxins, myotoxin II and α-cobratoxin, as examples. We reveal differences in how the selected IgG1s engage their antigens and human FcRn and show how these differences translate into distinct cellular handling properties related to their pH-dependent antigen binding phenotypes and Fc-engineering for improved FcRn binding. Our study showcases the complexity of engineering pH-dependent antigen binding IgG1s and demonstrates the effects on cellular antibody-antigen recycling.

4.
Toxins (Basel) ; 16(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39195737

RESUMO

Ananteris is a scorpion genus that inhabits dry and seasonal areas of South and Central America. It is located in a distinctive morpho-group of Buthids, the 'Ananteris group', which also includes species distributed in the Old World. Because of the lack of information on venom composition, the study of Ananteris species could have biological and medical relevance. We conducted a venomics analysis of Ananteris platnicki, a tiny scorpion that inhabits Panama and Costa Rica, which shows the presence of putative toxins targeting ion channels, as well as proteins with similarity to hyaluronidases, proteinases, phospholipases A2, members of the CAP-domain family, and hemocyanins, among others. Venom proteolytic and hyaluronidase activities were corroborated. The determination of the primary sequences carried out by mass spectrometry evidences that several peptides are similar to the toxins present in venoms from Old World scorpion genera such as Mesobuthus, Lychas, and Isometrus, but others present in Tityus and Centruroides toxins. Even when this venom displays the characteristic protein families found in all Buthids, with a predominance of putative Na+-channel toxins and proteinases, some identified partial sequences are not common in venoms of the New World species, suggesting its differentiation into a distinctive group separated from other Buthids.


Assuntos
Venenos de Escorpião , Escorpiões , Costa Rica , Panamá , Animais , Venenos de Escorpião/química , Sequência de Aminoácidos , Hialuronoglucosaminidase/metabolismo , Dados de Sequência Molecular
5.
Biochimie ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089640

RESUMO

Snakebite envenomations result in acute and chronic physical and psychological health effects on their victims, leading to a substantial socio-economic burden in tropical and subtropical countries. Local necrosis is one of the serious effects caused by envenomation, primarily induced by snake venoms from the Viperidae family through the direct action of components collectively denominated as myotoxins, including the phopholipase A2-like (PLA2-like) toxins. Considering the limitations of antivenoms in preventing the rapid development of local tissue damage caused by envenomation, the use of small molecule therapeutics has been suggested as potential first-aid treatments or as adjuvants to antivenom therapy. In this review, we provide an overview of the structural interactions of molecules exhibiting inhibitory activity toward PLA2-like toxins. Additionally, we discuss the implications for the myotoxic mechanism of PLA2-like toxins and the molecules involved in their activation, highlighting key differences between activators and inhibitors. Finally, we integrate all these results to propose a classification of inhibitors into three different classes and five sub-classes. Taking into account the structural and affinity information, we compare the different inhibitors/ligands to gain a deeper understanding of the structural basis for the effective inhibition of PLA2-like toxins. By offering these insights, we aim to contribute to the search for new and efficient inhibitor molecules to complement and improve current therapy by conventional antivenoms.

6.
Toxins (Basel) ; 16(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057931

RESUMO

This study investigated the intraspecific and interspecific variability in the venom effects of Agkistrodon viperid snake species and subspecies (eleven venoms total) on plasma clotting times, fibrinogen levels, and fibrin clot strength. Significant delays in plasma clotting time were observed for A. conanti, A. contortrix mokasen, A. contortrix phaeogaster, A. howardgloydi, A. piscivorus leucostoma, and A. piscivorus piscivorus. Notably, the phylogenetically disjunct lineages A. conanti, A. contortrix mokasen, and A. howardgloydi exhibited the most potent anticoagulant effects, indicating the independent amplification of a basal trait. Inhibition assays with the activated clotting enzymes Factors XIa, IXa, Xa, and IIa (thrombin) revealed that FXa inhibition is another basal trait amplified independently on multiple occasions within the genus, but with A. howardgloydi, notably more potent than all others. Phospholipid degradation and zymogen destruction were identified as mechanisms underlying the variability in venom effects observed experimentally and in previous clinical reports. Thromboelastography demonstrated that the venoms did not clot fibrinogen directly but affected fibrin clot strength by damaging fibrinogen and that thrombin was subsequently only able to cleave into weak, unstable clots. The ability to activate Protein C, an endogenous anticoagulant enzyme, varied across species, with some venoms exceeding that of A. contortrix contortrix, which previously yielded the protein diagnostic agent Protac®. Phylogenetic analysis suggested that both fibrinogen degradation and Protein C activation were each amplified multiple times within the genus, albeit with negative correlation between these two modes of action. This study highlights the evolutionary, clinical, and biodiscovery implications of venom variability in the Agkistrodon species, underscoring their dynamic evolution, emphasising the need for tailored clinical approaches, and highlighting the potential for novel diagnostic and therapeutic developments inspired by the unique properties of snake venoms.


Assuntos
Agkistrodon , Anticoagulantes , Coagulação Sanguínea , Venenos de Crotalídeos , Especificidade da Espécie , Anticoagulantes/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Fibrinogênio/metabolismo , Filogenia , Tromboelastografia
7.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692848

RESUMO

AIM: Tarantulas are one of the largest predatory arthropods in tropical regions. Tarantulas though not lethal to humans, their venomous bite kills small animals and insect upon which they prey. To understand the abiotic and biotic components involved in Neotropical tarantula bites, we conducted a venom-microbiomics study in eight species from Costa Rica. METHODS AND RESULTS: We determined that the toxin profiles of tarantula venom are highly diverse using shotgun proteomics; the most frequently encountered toxins were ω-Ap2 toxin, neprilysin-1, and several teraphotoxins. Through culture-independent and culture-dependent methods, we determined the microbiota present in the venom and excreta to evaluate the presence of pathogens that could contribute to primary infections in animals, including humans. The presence of opportunistic pathogens with hemolytic activity was observed, with a prominence of Stenotrophomonas in the venoms. Other bacteria found in venoms and excreta with hemolytic activity included members of the genera Serratia, Bacillus, Acinetobacter, Microbacterium, and Morganella. CONCLUSIONS: Our data shed light on the venom- and gut-microbiome associated with Neotropical tarantulas. This information may be useful for treating bites from these arthropods in both humans and farm animals, while also providing insight into the toxins and biodiversity of this little-explored microenvironment.


Assuntos
Venenos de Aranha , Aranhas , Animais , Aranhas/microbiologia , Costa Rica , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Proteômica , Microbioma Gastrointestinal , Microbiota
8.
Biochimie ; 225: 81-88, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762000

RESUMO

The genus Mixcoatlus is composed of three species: Mixcoatlus barbouri, M. browni, and M. melanurus, of which the venom composition of M. melanurus, the most common species of the three, has only recently been described. However, very little is known about the natural history of M. barbouri and M. browni, and the venom composition of these two species has remained thus far unexplored. In this study we characterize the proteomic profiles and the main biochemical and toxic activities of these two venoms. Proteomic data obtained by shotgun analysis of whole venom identified 12 protein families for M. barbouri, and 13 for M. browni. The latter venom was further characterized by using a quantitative 'venomics' protocol, which revealed that it is mainly composed of 51.1 % phospholipases A2 (PLA2), 25.5 % snake venom serine proteases (SVSP), 4.6 % l-amino oxidases (LAO), and 3.6 % snake venom metalloproteases (SVMP), with lower percentages other six protein families. Both venoms contained homologs of the basic and acidic subunits of crotoxin. However, due to limitations in M. barbouri venom availability, we could only characterize the crotoxin-like protein of M. browni venom, which we have named Mixcoatlutoxin. It exhibited a lethal potency in mice like that described for classical rattlesnake crotoxins. These findings expand knowledge on the distribution of crotoxin-like heterodimeric proteins in viper snake species. Further investigation of the bioactivities of the venom of M. barbouri, on the other hand, remains necessary.

9.
Acta Trop ; 255: 107230, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714240

RESUMO

The scorpion Aegaeobuthus nigrocinctus inhabits areas in Turkey and the Levant region of the Middle East where severe/lethal envenomings have been reported. Previous research indicated its extreme venom lethality to vertebrates and distinct envenomation syndrome. We report on the composition of A. nigrocinctus venom from Lebanese specimens using nESI-MS/MS, MALDI-TOF MS, SDS-PAGE and RP-HPLC. Venom lethality in mice was also assessed (LD50 = 1.05 (0.19-1.91) mg/kg, i.p), confirming A. nigrocinctus venom toxicity from Levantine populations. Forty-seven peaks were resolved using RP-HPLC, 25 of which eluted between 20 and 40 % acetonitrile. In reducing SDS-PAGE, most predominant components were <10 kDa, with minor components at higher molecular masses of 19.6, 26.1, 46.3 and 57.7 kDa. MALDI-TOF venom fingerprinting detected 20 components within the 1,000-12,000 m/z range. Whole venom 'shotgun' bottom-up nLC-MS/MS approach, combined with in-gel tryptic digestion of SDS-PAGE bands, identified at least 67 different components belonging to 15 venom families, with ion channel-active components (K+ toxins (23); Na+ toxins (20); Cl- toxins (2)) being predominant. The sequence of a peptide (named α-KTx9.13) ortholog to Leiurus hebraeus putative α-KTx9.3 toxin was fully determined, which exhibited 81-96 % identity to other members of the α-KTx9 subfamily targeting Kv1.x and Ca2+-activated K+ channels. Chlorotoxin-like peptides were also identified. Our study underscores the medical significance of A. nigrocinctus in the region and reveals the potential value of its venom components as lead templates for biomedical applications. Future work should address whether available antivenoms in the Middle East are effective against A. nigrocinctus envenoming in the Levant area.


Assuntos
Eletroforese em Gel de Poliacrilamida , Venenos de Escorpião , Escorpiões , Animais , Escorpiões/química , Venenos de Escorpião/química , Venenos de Escorpião/toxicidade , Camundongos , Cromatografia Líquida de Alta Pressão , Dose Letal Mediana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Proteômica , Masculino , Proteoma/análise , Oriente Médio , Análise de Sobrevida , Peso Molecular
10.
Mol Cell Proteomics ; 23(6): 100779, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679388

RESUMO

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.


Assuntos
Venenos de Crotalídeos , Crotalus , Proteoma , Proteômica , Animais , Crotalus/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Venenos de Serpentes/metabolismo
11.
Nat Commun ; 15(1): 173, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228619

RESUMO

Improved therapies are needed against snakebite envenoming, which kills and permanently disables thousands of people each year. Recently developed neutralizing monoclonal antibodies against several snake toxins have shown promise in preclinical rodent models. Here, we use phage display technology to discover a human monoclonal antibody and show that this antibody causes antibody-dependent enhancement of toxicity (ADET) of myotoxin II from the venomous pit viper, Bothrops asper, in a mouse model of envenoming that mimics a snakebite. While clinical ADET related to snake venom has not yet been reported in humans, this report of ADET of a toxin from the animal kingdom highlights the necessity of assessing even well-known antibody formats in representative preclinical models to evaluate their therapeutic utility against toxins or venoms. This is essential to avoid potential deleterious effects as exemplified in the present study.


Assuntos
Bothrops , Neurotoxinas , Camundongos , Animais , Humanos , Neurotoxinas/toxicidade , Bothrops asper , Anticorpos Facilitadores , Anticorpos Monoclonais/toxicidade
12.
Biochimie ; 216: 160-174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890695

RESUMO

Crotalus culminatus is a medically significant species of rattlesnake in Mexico [1]. While the proteomic composition of its venom has been previously reported for both juvenile and adult specimens, there has been limited research into its functional properties, with only a few studies, including one focusing on coagulotoxicity mechanisms. In this study, we aimed to compare the biochemical and biological activities of the venom of juvenile and adult snakes. Additionally, we assessed antibody production using the venoms of juveniles and adults as immunogens in rabbits. Our findings reveal lethality and proteolytic activity differences between the venoms of juveniles and adults. Notably, juvenile venoms exhibited high proportions of crotamine, while adult venoms displayed a reduction of this component. A commercially available antivenom demonstrated effective neutralization of lethality of both juvenile and adult venoms in mice. However, it failed to neutralize the paralytic activity induced by crotamine, which, in contrast, was successfully inhibited by antibodies obtained from hyperimmunized rabbits. These results suggest the potential inclusion of C. culminatus venom from juveniles in commercial antivenom immunization schemes to generate antibodies targeting this small myotoxin.


Assuntos
Antivenenos , Venenos de Crotalídeos , Coelhos , Animais , Camundongos , Antivenenos/farmacologia , Crotalus , Proteômica , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/química , Neurotoxinas , México
13.
Toxicon ; 237: 107548, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065256

RESUMO

The scorpion Leiurus abdullahbayrami has been associated with severe/lethal envenomings throughout the Levant region of the Middle East, encompassing Turkey, Syria, and Lebanon, and only scarce information is available on its venom composition, activity, and antigenicity. We report on the composition of L. abdullahbayrami venom collected from Lebanese specimens using nESI-MS/MS, MALDI-TOF MS, SDS-PAGE and RP-HPLC. Venom lethality, through LD50 determination in mice (intraperitoneal), was also assessed (0.75 (0.16-1.09) mg/kg), confirming L.abdullahbayrami venom vertebrate toxicity. Fifty-four peaks were detected using RP-HPLC, half of which eluted in the gradient region between 20 and 40% acetonitrile. In reducing SDS-PAGE, most predominant components were <10 kDa, with minor components at higher molecular masses of 24.4, 43.1, and 48.9 kDa. Venom mass fingerprint by MALDI-TOF detected 21 components within the 1000-12,000 m/z range. Whole venom 'shotgun' bottom-up nLC-MS/MS approach, combined with in-gel tryptic digestion of SDS-PAGE bands, identified at least 113 different components belonging to 15 venom families and uncharacterized proteins, with ion channel-active components (K+ channel toxins (28); Na+ channel toxins (42); Cl- channel toxins (4); Ca+2 toxins (2)) being predominant. A single match for a L. adbullahbayrami NaTx was found in the UniProt database with other congeneric species, toxin h3.1 from Leiurus hebraeus, suggesting this might be an indication of venom divergence within Leiurus, eventhough this warrants further investigation involving venom proteomics and transcriptomics of relevant species. Considering such potential interspecific venom variation, future work should address whether preparation of a specific anti-L. abdullahbayrami antivenom is justified.


Assuntos
Escorpiões , Espectrometria de Massas em Tandem , Humanos , Animais , Camundongos , Antivenenos/farmacologia , Peçonhas , Turquia
14.
Acta Trop ; 250: 107094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101764

RESUMO

Snakebite envenomings most frequently reported in Colombia are caused by snakes of the genera Bothrops, Bothriechis, Bothrocophias, and Porthidium. Their venoms induce local and systemic pathophysiological effects, sometimes leading to permanent sequelae such as reduced mobility of the limbs, amputations, besides the risk of death. The genus Bothrocophias includes nine species, among which B. campbelli has a distribution restricted to the department of Nariño in Colombia. In this work we determined the toxinological profile its venom, by performing assays for the lethal, hemorrhagic, edematogenic, and myotoxic activities in mouse models, as well as for in vitro coagulant activity on human plasma. The lethal toxicity of the venom was 142.7 µg venom/mouse (111.4-179.8 µg/mouse; 6.6-10.6 µg/g body weight) by intraperitoneal route. Its hemorrhagic activity (minimum hemorrhagic dose: 12.7 ± 2.3 µg) is generally weaker compared to other South American vipers, but edematogenic (minimum edematogenic dose 1.0 ± 0.3 µg), and myotoxic (minimum myotoxic dose 3.9 ± 2.5 µg) activities are very potent. Histopathological examination of the injected mouse gastrocnemius muscle showed prominent disorganization of the myofibrils, myonecrosis, and an intense inflammatory leukocyte infiltrate. In vitro, the minimal coagulant dose was 12.3 ± 0.5 µg. Overall, this toxinological profile would predict that the clinical picture of envenomings by B. campbelli might be characterized by moderate disturbances in the coagulation cascade, mild local hemorrhage, and, conversely, severe myonecrosis and edema, which could potentially lead to compartment syndrome and gangrene.


Assuntos
Bothrops , Venenos de Crotalídeos , Humanos , Animais , Camundongos , Colômbia , Venenos de Crotalídeos/toxicidade , Hemorragia/induzido quimicamente , Serpentes , Antivenenos/efeitos adversos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38063951

RESUMO

Skeletal muscle necrosis is a common clinical manifestation of snakebite envenoming. The predominant myotoxic components in snake venoms are catalytically-active phospholipases A2 (PLA2) and PLA2 homologs devoid of enzymatic activity, which have been used as models to investigate various aspects of muscle degeneration. This review addresses the changes in the contractile apparatus of skeletal muscle induced by these toxins. Myotoxic components initially disrupt the integrity of sarcolemma, generating a calcium influx that causes various degenerative events, including hypercontraction of myofilaments. There is removal of specific sarcomeric proteins, owing to the hydrolytic action of muscle calpains and proteinases from invading inflammatory cells, causing an initial redistribution followed by widespread degradation of myofibrillar material. Experiments using skinned cardiomyocytes and skeletal muscle fibers show that these myotoxins do not directly affect the contractile apparatus, implying that hypercontraction is due to cytosolic calcium increase secondary to sarcolemmal damage. Such drastic hypercontraction may contribute to muscle damage by generating mechanical stress and further sarcolemmal damage.

16.
Acta Trop ; 248: 107031, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37777039

RESUMO

OBJECTIVE: We aimed to elucidate the potential differences in the venom peptide sequences of three Tityus species from Costa Rican rainforests: T. jaimei, T. championi and T. dedoslargos, compared to T. cf. asthenes from Colombia, which could explain the low level of scorpionism in Costa Rica, evidenced by the lack of epidemiological data. METHODOLOGY: We applied venom proteomics of peptides purified by RP-HPLC and compared the obtained sequences from venoms of these Tityus species to the sequences previously identified from Tityus inhabiting other Central and South American regions. RESULTS: Venom proteome analysis evidences that most of the putative peptide toxins identified in Costa Rican dark-colored Tityus are very similar to those present in other T. (Atreus) from the region. CONCLUSIONS: Our study suggests that, in the case of potential envenomation by Tityus in Costa Rica, the same level of toxicity should be observed, compared to other cases caused by members of the subgenus from other geographical localities. On the other hand, compared to countries with more accelerated urban expansion, Costa Rican Tityus still inhabit secondary rainforests and do not commonly share the same spaces with humans, so the lack of epidemiological evidence of medical emergencies caused by envenoming by this scorpion group could be more related to ecological and demographic factors and less attributed to the characteristics of the venom.


Assuntos
Floresta Úmida , Venenos de Escorpião , Humanos , Animais , Costa Rica , Escorpiões , Proteômica , Peptídeos , Venenos de Escorpião/toxicidade
17.
Pflugers Arch ; 475(10): 1193-1202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37474774

RESUMO

Myonecrosis is a frequent clinical manifestation of envenomings by Viperidae snakes, mainly caused by the toxic actions of secreted phospholipase A2 (sPLA2) enzymes and sPLA2-like homologs on skeletal muscle fibers. A hallmark of the necrotic process induced by these myotoxins is the rapid appearance of hypercontracted muscle fibers, attributed to the massive influx of Ca2+ resulting from cell membrane damage. However, the possibility of myotoxins having, in addition, a direct effect on the contractile machinery of skeletal muscle fibers when internalized has not been investigated. This question is here addressed by using an ex vivo model of single-skinned muscle fibers, which lack membranes but retain an intact contractile apparatus. Rabbit psoas skinned fibers were exposed to two types of myotoxins of Bothrops asper venom: Mt-I, a catalytically active Asp49 sPLA2 enzyme, and Mt-II, a Lys49 sPLA2-like protein devoid of phospholipolytic activity. Neither of these myotoxins affected the main parameters of force development in striated muscle sarcomeres of the skinned fibers. Moreover, no microscopical alterations were evidenced after their exposure to Mt-I or Mt-II. In contrast to the lack of effects on skinned muscle fibers, both myotoxins induced a strong hypercontraction in myotubes differentiated from murine C2C12 myoblasts, with drastic morphological alterations that reproduce those described in myonecrotic tissue in vivo. As neither Mt-I nor Mt-II showed direct effects upon the contractile apparatus of skinned fibers, it is concluded that the mechanism of hypercontraction triggered by both myotoxins in patients involves indirect effects, i.e., the large cytosolic Ca2+ increase after sarcolemma permeabilization.


Assuntos
Bothrops , Fosfolipases A2 Secretórias , Camundongos , Animais , Coelhos , Neurotoxinas/farmacologia , Bothrops/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Fosfolipases A2 Secretórias/metabolismo , Fosfolipases A2 Secretórias/farmacologia , Bothrops asper
18.
mSphere ; 8(4): e0006123, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37404031

RESUMO

Desmodus rotundus, vampire bats, transmit dangerous infections, and brucellosis is a hazardous zoonotic disease, two adversities that coexist in the subtropical and tropical areas of the American continent. Here, we report a 47.89% Brucella infection prevalence in a colony of vampire bats inhabiting the tropical rainforest of Costa Rica. The bacterium induced placentitis and fetal death in bats. Wide-range phenotypic and genotypic characterization placed the Brucella organisms as a new pathogenic species named Brucella nosferati sp. nov., isolated from bat tissues, including the salivary glands, suggesting feeding behavior might favor transmission to their prey. Overall analyses placed B. nosferati as the etiological agent of a reported canine brucellosis case, demonstrating its potential for infecting other hosts. To assess the putative prey hosts, we analyzed the intestinal contents of 14 infected and 23 non-infected bats by proteomics. A total of 54,508 peptides sorted into 7,203 unique peptides corresponding to 1,521 proteins were identified. Twenty-three wildlife and domestic taxa, including humans, were foraged by B. nosferati-infected D. rotundus, suggesting contact of this bacterium with a broad range of hosts. Our approach is appropriate for detecting, in a single study, the prey preferences of vampire bats in a diverse area, demonstrating its suitability for control strategies where vampire bats thrive. IMPORTANCE The discovery that a high proportion of vampire bats in a tropical area is infected with pathogenic Brucella nosferati and that bats forage on humans and many wild and domestic animals is relevant from the perspective of emerging disease prevention. Indeed, bats harboring B. nosferati in their salivary glands may transmit this pathogenic bacterium to other hosts. This potential is not trivial since, besides the demonstrated pathogenicity, this bacterium possesses all the required virulent arsenal of dangerous Brucella organisms, including those that are zoonotic for humans. Our work has settled the basis for future surveillance actions in brucellosis control programs where these infected bats thrive. Moreover, our strategy to identify the foraging range of bats may be adapted for exploring the feeding habits of diverse animals, including arthropod vectors of infectious diseases, and therefore of interest to a broader audience besides experts on Brucella and bats.


Assuntos
Brucella , Brucelose , Quirópteros , Humanos , Animais , Cães , Estados Unidos , Animais Domésticos , Quirópteros/microbiologia , Animais Selvagens , Brucelose/veterinária
19.
Mass Spectrom Rev ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37155340

RESUMO

The advent of soft ionization mass spectrometry-based proteomics in the 1990s led to the development of a new dimension in biology that conceptually allows for the integral analysis of whole proteomes. This transition from a reductionist to a global-integrative approach is conditioned to the capability of proteomic platforms to generate and analyze complete qualitative and quantitative proteomics data. Paradoxically, the underlying analytical technique, molecular mass spectrometry, is inherently nonquantitative. The turn of the century witnessed the development of analytical strategies to endow proteomics with the ability to quantify proteomes of model organisms in the sense of "an organism for which comprehensive molecular (genomic and/or transcriptomic) resources are available." This essay presents an overview of the strategies and the lights and shadows of the most popular quantification methods highlighting the common misuse of label-free approaches developed for model species' when applied to quantify the individual components of proteomes of nonmodel species (In this essay we use the term "non-model" organisms for species lacking comprehensive molecular (genomic and/or transcriptomic) resources, a circumstance that, as we detail in this review-essay, conditions the quantification of their proteomes.). We also point out the opportunity of combining elemental and molecular mass spectrometry systems into a hybrid instrumental configuration for the parallel identification and absolute quantification of venom proteomes. The successful application of this novel mass spectrometry configuration in snake venomics represents a proof-of-concept for a broader and more routine application of hybrid elemental/molecular mass spectrometry setups in other areas of the proteomics field, such as phosphoproteomics, metallomics, and in general in any biological process where a heteroatom (i.e., any atom other than C, H, O, N) forms integral part of its mechanism.

20.
Eur Biophys J ; 52(4-5): 445-457, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209172

RESUMO

We report the solution behavior, oligomerization state, and structural details of myotoxin-II purified from the venom of Bothrops asper in the presence and absence of sodium dodecyl sulfate (SDS) and multiple lipids, as examined by analytical ultracentrifugation and nuclear magnetic resonance. Molecular functional and structural details of the myotoxic mechanism of group II Lys-49 phospholipase A2 homologues have been only partially elucidated so far, and conflicting observations have been reported in the literature regarding the monomeric vs. oligomeric state of these toxins in solution. We observed the formation of a stable and discrete, hexameric form of myotoxin-II, but only in the presence of small amounts of SDS. In SDS-free medium, myotoxin-II was insensitive to mass action and remained monomeric at all concentrations examined (up to 3 mg/ml, 218.2 µM). At SDS concentrations above the critical micelle concentration, only dimers and trimers were observed, and at intermediate SDS concentrations, aggregates larger than hexamers were observed. We found that the amount of SDS required to form a stable hexamer varies with protein concentration, suggesting the need for a precise stoichiometry of free SDS molecules. The discovery of a stable hexameric species in the presence of a phospholipid mimetic suggests a possible physiological role for this oligomeric form, and may shed light on the poorly understood membrane-disrupting mechanism of this myotoxic protein class.


Assuntos
Bothrops , Neurotoxinas , Animais , Neurotoxinas/química , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Bothrops/metabolismo , Fosfolipases A2 , Espectroscopia de Ressonância Magnética , Bothrops asper
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...