Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1846, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253578

RESUMO

To investigate the sealing capability of mudstone caprock during the evolution of organic matter (OM)-rich mudstone, a series of hydrous pyrolysis experiments were first conducted to examine the impact of hydrocarbon generation. The pore type, pore structure, porosity, and gas breakthrough pressure of pyrolytic residual samples were analyzed by field emission scanning electron microscopy, low pressure nitrogen adsorption measurements, porosimetry, and gas breakout core experiments. To model the environment at different depths, these six experiments on hydrous pyrolysis were performed at different temperatures, lithostatic pressures, and hydrodynamic pressures, while other experimental factors such as the original sample, heating time, and rate were kept constant. The results showed that during the thermal evolution process, hydrocarbons were generated from OM in mudstone, resulting in the formation of pores within the OM. Organic acids produced by hydrocarbon generation effectively dissolved minerals, leading to the creation of numerous dissolution pores. Changes in pore type led to changes in pore structure and porosity. The volume of micropores and macropores showed an increasing trend before reaching a Ro value of 1.41%. However, after passing this threshold, they began to decrease. The volume of mesopores showed a decreasing trend before reaching a Ro value of 1.32%. After 1.32%, they began to increase. The porosity was mainly affected by the pore volumes of the mesopores and macropores. The porosity exhibited two peaks: the first occurred at a Ro value of 0.72%, with a porosity level of 4.6%. The second occurred at a Ro value of 1.41% and a porosity level of 10.3%. The breakthrough pressure was a comprehensive reflection of these influences, and its trend exhibited a negative correlation with porosity (R2 = 0.886). For two high values of porosity, the breakthrough pressure corresponded to two low values. Smaller values of the breakthrough pressure indicated a poorer sealing capability of the mudstone caprock. Overall, hydrocarbon generation in the mudstone affected the sealing capability. The mudstone in the studied area exhibited good sealing at Ro below 1.32%. However, once above the 1.32% threshold, the fluctuations of the breakthrough pressure values exhibited considerable variability, requiring a comprehensive evaluation to assess its sealing capability.

2.
Cell Mol Biol Lett ; 28(1): 101, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062349

RESUMO

BACKGROUND: The deer antler, a remarkable mammalian appendage, has a growth rate surpassing that of any other known osseous organ. Emerging evidence indicates that circRNA and MAPK1 play critical roles in chondrocytes. Thus, exploration of their functions in antler chondrocytes will help us to understand the mechanism regulating the rapid antler growth. METHODS: qRT-PCR, western blot, and immunohistochemistry were used to assess the expression of mRNAs and proteins. CCK-8, EdU, Cell migration, ALP activity detection, and ALP staining examined the effects of MAPK1 in antler chondrocytes. FISH, RIP, and luciferase assays were performed to evaluate the interactions among circRNA3634/MAPK1 and miR-124486-5. RIP and RAP assays proved the binding interaction between circRNA3634 and RBPs. Me-RIP was used to determine the m6A methylation modification of circRNA3634. RESULTS: This study revealed high MAPK1 expression in antler cartilage tissue. Overexpression of MAPK1 promoted the proliferation, migration, and differentiation of antler chondrocytes and increased the expression of MAPK3, RAF1, MEK1, RUNX2, and SOX9. The silencing of MAPK1 had the opposite effect. CircRNA3634 was found to act as a molecular sponge for miR-124486-5, leading to increased MAPK1 expression and enhanced proliferation and migration of antler chondrocytes through competitive miR-124486-5 binding. We discovered that METTL3 mediates m6A modification near the splicing site of circRNA3634 and is involved in the proliferation and differentiation of antler chondrocytes. The m6A reader YTHDC1 facilitated the nuclear export of circRNA3634 in an m6A-dependent manner. Our results indicate that m6A-modified circRNA3634 promotes the proliferation of antler chondrocytes by targeting MAPK1 and show that the nuclear export of circRNA3634 is related to the expression of YTHDC1, suggesting that circRNA3634 could represent a critical regeneration marker for the antler. CONCLUSIONS: Our results revealed a novel m6A-modified circRNA3634 promoted the proliferation and differentiation of antler chondrocytes by regulating MAPK1. The nuclear export of circRNA3634 was related to the expression of YTHDC1.


Assuntos
Chifres de Veado , Cervos , MicroRNAs , Animais , Condrócitos/metabolismo , Proliferação de Células/genética , Cervos/genética , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373516

RESUMO

The use of deer antlers dates back thousands of years in Chinese history. Deer antlers have antitumor, anti-inflammatory, and immunomodulatory properties and can be used in treating neurological diseases. However, only a few studies have reported the immunomodulatory mechanism of deer antler active compounds. Using network pharmacology, molecular docking, and molecular dynamics simulation techniques, we analyzed the underlying mechanism by which deer antlers regulate the immune response. We identified 4 substances and 130 core targets that may play immunomodulatory roles, and the beneficial and non-beneficial effects in the process of immune regulation were analyzed. The targets were enriched in pathways related to cancer, human cytomegalovirus infection, the PI3K-Akt signaling pathway, human T cell leukemia virus 1 infection, and lipids and atherosclerosis. Molecular docking showed that AKT1, MAPK3, and SRC have good binding activity with 17 beta estradiol and estrone. Additionally, the molecular dynamics simulation of the molecular docking result using GROMACS software (version: 2021.2) was performed and we found that the AKT1-estrone complex, 17 beta estradiol-AKT1 complex, estrone-MAPK3 complex, and 17 beta estradiol-MAPK3 complex had relatively good binding stability. Our research sheds light on the immunomodulatory mechanism of deer antlers and provides a theoretical foundation for further exploration of their active compounds.


Assuntos
Chifres de Veado , Cervos , Agentes de Imunomodulação , Medicina Tradicional Chinesa , Humanos , Animais , Chifres de Veado/química , Farmacologia em Rede , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Terapia de Alvo Molecular , Mapas de Interação de Proteínas
4.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108365

RESUMO

The antler is the unique mammalian organ found to be able to regenerate completely and periodically after loss, and the continuous proliferation and differentiation of mesenchymal cells and chondrocytes together complete the regeneration of the antler. Circular non-coding RNAs (circRNAs) are considered to be important non-coding RNAs that regulate body development and growth. However, there are no reports on circRNAs regulating the antler regeneration process. In this study, full-transcriptome high-throughput sequencing was performed on sika deer antler interstitial and cartilage tissues, and the sequencing results were verified and analyzed. The competing endogenous RNA (ceRNA) network related to antler growth and regeneration was further constructed, and the differentially expressed circRNA2829 was screened out from the network to study its effect on chondrocyte proliferation and differentiation. The results indicated that circRNA2829 promoted cell proliferation and increased the level of intracellular ALP. The analysis of RT-qPCR and Western blot demonstrated that the mRNA and protein expression levels of genes involved in differentiation rose. These data revealed that circRNAs play a crucial regulatory role in deer antler regeneration and development. CircRNA2829 might regulate the antler regeneration process through miR-4286-R+1/FOXO4.


Assuntos
Chifres de Veado , Cervos , MicroRNAs , Animais , Condrócitos , Transcriptoma , Chifres de Veado/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Cervos/genética , Diferenciação Celular/genética , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Cell Signal ; 98: 110429, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35917995

RESUMO

Long non-coding RNA play an importantr role in the differentiation of chondrocytes. This study aims to explore the role of long non-coding RNA in the transcriptional regulation of Notch4. In previous studies, it has been found that Notch signal can be used as the downstream of TGF-ß signal to affect the proliferation and differentiation of deer antler chondrocytes, but the specific mechanism remains unclear. Here we found that lncRNA27785.1 was involved in the regulation of TGF-ß/ Smad3 signal and Notch4 gene. The overexpression lncRNA27785.1 can negatively regulate the expression of Notch4 to inhibit cell proliferation and differentiation, while interference with lncRNA27785.1 can promote the expression of Notch4 gene to promote the proliferation and differentiation of chondrocytes. Subsequently, through luciferase experiment and CHIP experiment, we found that lncRNA27785.1 is regulated by Smad3 transcription, and Smad3 inhibited the expression of lncRNA27785.1. In addition, activated TGF-ß signaling can reduce the inhibitory effect of lncRNA27785.1 on Notch4 signaling. In summary, we found that lncRNA27785.1 and TGF-ß/Smad3 play an important role in Notch4 signaling. Our findings provided evidence to explain how TGF-ß signaling regulate the Notch signaling pathway to influence chondrocyte proliferation and differentiation by a specific lncRNA27785.1.


Assuntos
Chifres de Veado , Cervos , RNA Longo não Codificante , Animais , Chifres de Veado/metabolismo , Diferenciação Celular , Proliferação de Células/genética , Condrócitos/metabolismo , Cervos/genética , Cervos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
Asian-Australas J Anim Sci ; 29(8): 1159-65, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26954145

RESUMO

The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller's dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and ß-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to ß-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of ß-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001) and solubility (p = 0.002). These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-ß-sheet ratio can be used to predict the nutritional value of feed proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...