RESUMO
A Wireless Body Area Network (WBAN), introduced into the healthcare sector to improve patient care and enhance the efficiency of medical services, also brings the risk of the leakage of patients' privacy. Therefore, maintaining the communication security of patients' data has never been more important. However, WBAN faces issues such as open medium channels, resource constraints, and lack of infrastructure, which makes the task of designing a secure and economical communication scheme suitable for WBAN particularly challenging. Signcryption has garnered attention as a solution suitable for resource-constrained devices, offering a combination of authentication and confidentiality with low computational demands. Although the advantages offered by existing certificateless signcryption schemes are notable, most of them only have proven security within the random oracle model (ROM), lack public ciphertext authenticity, and have high computational overheads. To overcome these issues, we propose a certificateless anonymous signcryption (CL-ASC) scheme suitable for WBAN, featuring anonymity of the signcrypter, public verifiability, and public ciphertext authenticity. We prove its security in the standard model, including indistinguishability, unforgeability, anonymity of the signcrypter, and identity identifiability, and demonstrate its superiority over relevant schemes in terms of security, computational overheads, and storage costs.
RESUMO
Nanosecond laser cleaning effectively removes oxide film and dirt from the surface of aluminum body parts for rail transit, as well as improving surface properties. The effect of laser cleaning on the quality of weld was studied in detail for different scanning frequencies and cleaning speeds. The effect of post-weld laser cleaning on weld quality was investigated. After laser cleaning at different parameters, the surface oxygen content was decreased and the surface roughness and surface hardness were increased. Variation of surface oxygen content was related to energy density and spot density. The lowest oxygen content was obtained at 150 W, 100 Hz and 0.8 m/min. Laser-generated craters changed surface morphology and improved surface roughness. The mechanical properties of the welded joints were slightly improved, which relates to a decrease in porosity. The minimum porosity of the laser-cleaned weld was 0.021%. This work provides new ideas for the nanosecond laser cleaning of aluminum alloy and its welding properties.
RESUMO
In order to accelerate the growth of interfacial intermetallic compound (IMC) layers in a soldering structure, Cu/SAC305/Cu was first ultrasonically spot soldered and then subjected to isothermal aging. Relatively short vibration times, i.e., 400 ms and 800 ms, were used for the ultrasonic soldering. The isothermal aging was conducted at 150 °C for 0, 120, 240, and 360 h. The evolution of microstructure, the IMC layer growth mechanism during aging, and the shear strength of the joints after aging were systemically investigated. Results showed the following. (i) Formation of intermetallic compounds was accelerated by ultrasonic cavitation and streaming effects, the thickness of the interfacial Cu6Sn5 layer increased with aging time, and a thin Cu3Sn layer was identified after aging for 360 h. (ii) The growth of the interfacial IMC layer of the ultrasonically soldered Cu/SAC305/Cu joints followed a linear function of the square root of the aging time, revealing a diffusion-controlled mechanism. (iii) The tensile shear strength of the joint decreased to a small extent with increasing aging time, owing to the combined effects of IMC grain coarsening and the increase of the interfacial IMC. (iv) Finally, although the fracture surfaces and failure locations of the joint soldered with 400 ms and 800 ms vibration times show similar characteristics, they are influenced by the aging time.