Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
Nucleic Acids Res ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783375

RESUMO

The exchange of genes between cells is known to play an important physiological and pathological role in many organisms. We show that circulating tumor DNA (ctDNA) facilitates cell-specific gene transfer between human cancer cells and explain part of the mechanisms behind this phenomenon. As ctDNA migrates into the nucleus, genetic information is transferred. Cell targeting and ctDNA integration require ERVL, SINE or LINE DNA sequences. Chemically manufactured AluSp and MER11C sequences replicated multiple myeloma (MM) ctDNA cell targeting and integration. Additionally, we found that ctDNA may alter the treatment response of MM and pancreatic cancer models. This study shows that retrotransposon DNA sequences promote cancer gene transfer. However, because cell-free DNA has been detected in physiological and other pathological conditions, our findings have a broader impact than just cancer. Furthermore, the discovery that transposon DNA sequences mediate tissue-specific targeting will open up a new avenue for the delivery of genes and therapies.

2.
Lancet Haematol ; 11(7): e510-e520, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797190

RESUMO

BACKGROUND: Currently, the use of radiotherapy alone for people with multiple myeloma is limited to palliation of pain, pending fracture, and control of spinal-cord compression. Single immune-checkpoint inhibitors, such as anti-programmed death-1 (anti-PD1), have not been successful. We aimed to evaluate the activity and safety of the combination of pembrolizumab and low-dose, single-fraction, hypofractionated radiotherapy to treat patients with relapsed or refractory multiple myeloma. METHODS: For this prospective, single-centre, single-group, open-label, phase 2 trial, we recruited patients with relapsed or refractory multiple myeloma from the Winship Cancer Institute (Emory University, Atlanta, GA, USA). Key inclusion criteria were aged 18 years or older, Eastern Cooperative Oncology Group (ECOG) performance score of 0 or 1, relapsed or refractory multiple myeloma as indicated by progression under International Myeloma Working Group (IMWG) criteria, and adequate candidacy for both pembrolizumab and radiotherapy. Baseline and post-treatment assessments were serial bone-marrow biopsy, peripheral blood collections, staging, serial serum and urine paraprotein analysis, serial PET-CT imaging, and a physical examination. On day 1, patients received hypofractionated 8 gray in 1 fraction (8 Gy/1 fx) radiotherapy to either symptomatic or progressing extra-osseous or osseous myeloma sites. Patients also received pembrolizumab (200 mg/kg intravenously) on day 2 or 3, then once every 3 weeks (±7 days) for 2 years or until progressive disease, unacceptable toxicity, withdrawal of consent, loss to follow-up, or death. Dose reduction and interruptions were not allowed. The primary outcome was acute toxicity defined as grade 3 or worse toxicity at 3 months within the radiated site when used in combination with pembrolizumab. All patients were analysed per protocol and included in safety analyses. This trial is registered on ClinicalTrials.gov (NCT03267888); it is completed and closed to accrual. FINDINGS: 32 patients were screened between June 1, 2018, and Sept 2, 2022, and 25 were enrolled in the trial and treated on protocol. Of the 25 treated patients, 11 (44%) were female and 14 (56%) were male. 19 (76%) patients were White and six (24%) were Black or African American. Toxicity, as the primary outcome, was deemed to be acceptable as no grade 4 or 5 adverse events were observed. At 3-month follow-up, eight (32%) of 25 patients had treatment benefit (one had stable disease, three had partial response, two had very good partial response, and two had complete response). There was no grade 3 or worse radiation-related toxicity within irradiated volumes. One (4%) patient of the 25 who received combination treatment had a grade 3 pembrolizumab-related adverse event. There were no treatment-related deaths. INTERPRETATION: Combination treatment of low-dose, single-fraction radiotherapy with pembrolizumab was safe, with early promise of response activity. Our approach could be an option for patients with relapsed or refractory multiple myeloma who have not responded to previous treatment. Larger trials to substantiate our findings are needed. FUNDING: Merck Sharp & Dohme.


Assuntos
Anticorpos Monoclonais Humanizados , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/radioterapia , Mieloma Múltiplo/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Projetos Piloto , Estados Unidos , Recidiva Local de Neoplasia , Adulto , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Idoso de 80 Anos ou mais
3.
Cell Rep Med ; 5(6): 101571, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38776914

RESUMO

Iberdomide is a next-generation cereblon (CRBN)-modulating agent in the clinical development in multiple myeloma (MM). The analysis of biomarker samples from relapsed/refractory patients enrolled in CC-220-MM-001 (ClinicalTrials.gov: NCT02773030), a phase 1/2 study, shows that iberdomide treatment induces significant target substrate degradation in tumors, including in immunomodulatory agent (IMiD)-refractory patients or those with low CRBN levels. Additionally, some patients with CRBN genetic dysregulation who responded to iberdomide have a similar median progression-free survival (PFS) (10.9 months) and duration of response (DOR) (9.5 months) to those without CRBN dysregulation (11.2 month PFS, 9.4 month DOR). Iberdomide treatment promotes a cyclical pattern of immune stimulation without causing exhaustion, inducing a functional shift in T cells toward an activated/effector memory phenotype, including in triple-class refractory patients and those receiving IMiDs as a last line of therapy. This analysis demonstrates that iberdomide's clinical mechanisms of action are driven by both its cell-autonomous effects overcoming CRBN dysregulation in MM cells, and potent immune stimulation that augments anti-tumor immunity.


Assuntos
Mieloma Múltiplo , Talidomida , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Talidomida/uso terapêutico , Talidomida/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Feminino , Masculino , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Recidiva , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Idoso
4.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798338

RESUMO

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

5.
Res Sq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559048

RESUMO

The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19-) and non-LLPC (CD19+) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.

6.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38644993

RESUMO

Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment. Yet, it is unclear which BM niches give rise to MM pathophysiology. Here, we present a 3D microvascularized culture system, which models the endosteal and perivascular bone marrow niches, allowing us to study MM-stroma interactions in the BM niche and model responses to therapeutic CAR-T cells. We demonstrated the prolonged survival of cell line-based and patient-derived multiple myeloma cells within our in vitro system and successfully flowed in donor-matched CAR-T cells. We then measured T cell survival, differentiation, and cytotoxicity against MM cells using a variety of analysis techniques. Our MM-on-a-chip system could elucidate the role of the BM microenvironment in MM survival and therapeutic evasion and inform the rational design of next-generation therapeutics. TEASER: A multiple myeloma model can study why the disease is still challenging to treat despite options that work well in other cancers.

7.
medRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38496525

RESUMO

The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19 - ) and non-LLPC (CD19 + ) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.

8.
Sci Rep ; 14(1): 3616, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350990

RESUMO

Following infection or vaccination, early-minted antibody secreting cells (ASC) or plasmablasts appear in circulation transiently, and a small fraction migrates to the spleen or bone marrow (BM) to mature into long-lived plasma cells (LLPC). While LLPC, by definition, are quiescent or non-dividing, the majority of blood ASC are thought to be "blasting" or proliferative. In this study, we find > 95% nascent blood ASC in culture express Ki-67 but only 6-12% incorporate BrdU after 4 h or 24 h labeling. In contrast, < 5% BM LLPC in culture are Ki-67+ with no BrdU uptake. Due to limitations of traditional flow cytometry, we utilized a novel optofluidic technology to evaluate cell division with simultaneous functional IgG secretion. We find 11% early-minted blood ASC undergo division, and none of the terminally differentiated BM LLPC (CD19-CD38hiCD138+) divide during the 7-21 days in culture. While BM LLPC undergo complete cell cycle arrest, the process of differentiation into an ASC or plasmablasts also discourages entry into S phase. Since the majority of Ki-67+ nascent blood ASC have exited cell cycle and are no longer actively "blasting", the term "plasmablast", which traditionally refers to an ASC that still has the capacity to divide, may probably be a misnomer.


Assuntos
Medula Óssea , Plasmócitos , Humanos , Plasmócitos/metabolismo , Antígeno Ki-67 , Medula Óssea/metabolismo , Imunoglobulina G , Antígenos CD19/metabolismo
10.
Blood Cancer Discov ; 5(1): 56-73, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-37934799

RESUMO

Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes. IMiD treatment universally depleted chromatin-bound IKZF1, but eviction of P300 and BRD4 coactivators only occurred in IMiD-sensitive cells. IKZF1-bound enhancers overlapped other transcription factor binding motifs, including ETV4. Chromatin immunoprecipitation sequencing showed that ETV4 bound to the same enhancers as IKZF1, and ETV4 CRISPR/Cas9-mediated ablation resulted in sensitization of IMiD-resistant MM. ETV4 expression is associated with IMiD resistance in cell lines, poor prognosis in patients, and is upregulated at relapse. These data indicate that ETV4 alleviates IKZF1 and IKZF3 dependency in MM by maintaining oncogenic enhancer activity and identify transcriptional plasticity as a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE: We show that IKZF1-bound enhancers are critical for IMiD efficacy and that the factor ETV4 can bind the same enhancers and substitute for IKZF1 and mediate IMiD resistance by maintaining MYC and other oncogenes. These data implicate transcription factor redundancy as a previously unrecognized mode of IMiD resistance in MM. See related article by Welsh, Barwick, et al., p. 34. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.


Assuntos
Mieloma Múltiplo , Humanos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Agentes de Imunomodulação , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitina-Proteína Ligases/uso terapêutico
12.
Blood Cancer Discov ; 5(1): 34-55, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-37767768

RESUMO

Multiple myeloma (MM) is a malignancy that is often driven by MYC and that is sustained by IRF4, which are upregulated by super-enhancers. IKZF1 and IKZF3 bind to super-enhancers and can be degraded using immunomodulatory imide drugs (IMiD). Successful IMiD responses downregulate MYC and IRF4; however, this fails in IMiD-resistant cells. MYC and IRF4 downregulation can also be achieved in IMiD-resistant tumors using inhibitors of BET and EP300 transcriptional coactivator proteins; however, in vivo these drugs have a narrow therapeutic window. By combining IMiDs with EP300 inhibition, we demonstrate greater downregulation of MYC and IRF4, synergistic killing of myeloma in vitro and in vivo, and an increased therapeutic window. Interestingly, this potent combination failed where MYC and IRF4 expression was maintained by high levels of the AP-1 factor BATF. Our results identify an effective drug combination and a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE: These results highlight the dependence of MM on IKZF1-bound super-enhancers, which can be effectively targeted by a potent therapeutic combination pairing IMiD-mediated degradation of IKZF1 and IKZF3 with EP300 inhibition. They also identify AP-1 factors as an unrecognized mechanism of IMiD resistance in MM. See related article by Neri, Barwick, et al., p. 56. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Fator de Transcrição AP-1/uso terapêutico , Combinação de Medicamentos , Agentes de Imunomodulação
14.
EJHaem ; 4(4): 995-1005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38024593

RESUMO

Deeper responses are associated with longer survival in multiple myeloma (MM); however, limited data exist on the impact of response kinetics on outcomes. We investigated progression-free survival (PFS) and duration of response (DOR) by response depth and in early (best confirmed response 0-4 months; n = 424) versus late responders (best confirmed response >4 months; n = 281). Newly diagnosed patients enrolled in TOURMALINE-MM2 receiving ixazomib-lenalidomide-dexamethasone (IRd) (n = 351) or placebo-Rd (n = 354) were evaluated post hoc. Deeper responses were associated with longer PFS (complete response [CR] not reached [NR], very good partial response [VGPR] 37.2 months, partial response [PR] 16.4 months) and DOR (CR NR, VGPR 42.6 months, PR 15.4 months). Among patients with a PFS (n = 511) or DOR (n = 484) of ≥6 months who achieved ≥PR, median PFS was prolonged among late versus early responders receiving IRd (59.7 vs. 17.9 months) or placebo-Rd (56.6 vs. 12.4 months), as was median DOR (IRd, NR vs. 20.9 months; placebo-Rd, 58.2 vs. 11.7 months). While the treatment paradigm for newly diagnosed MM is treatment to progression, our findings suggest slowness of response to a proteasome inhibitor-immunomodulatory drug-steroid combination is not a negative predictor of outcome.

15.
Res Sq ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790523

RESUMO

We characterized virus-neutralization and spike-binding antibody profiles in myeloma patients following monovalent or bivalent-SARS-CoV-2 booster vaccination. Vaccination improves the breadth of binding antibodies but not neutralization activity against current variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.

16.
J Adv Pract Oncol ; 14(6): 503-518, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37808071

RESUMO

In the randomized phase II DREAMM-2 study, single-agent belantamab mafodotin demonstrated deep and durable responses and a manageable safety profile in triple-class refractory relapsed/refractory multiple myeloma (RRMM). We present patient-reported outcomes (PROs) from this study for patients treated with the approved dose of belantamab mafodotin (2.5 mg/kg q3w). Disease and treatment-related symptoms, health-related quality of life (HRQOL), functioning, and patient-reported ocular changes were assessed using questionnaires (European Organisation for Research and Treatment of Cancer Quality of Life questionnaires EORTC-QLQ-C30 and EORTC-QLQ-MY20, Ocular Surface Disease Index [OSDI], and the National Eye Institute Visual Functioning Questionnaire 25 [NEI VFQ-25]) at baseline, during treatment (every 3 or 6 weeks), and at the end of treatment (EOT). Eye examinations were conducted at baseline, prior to each treatment cycle, and at EOT. Patients reported ocular symptoms in the OSDI and NEI VFQ-25 questionnaires, with the median time to worst severity of 45 to 64 days depending on symptoms considered. Some limitations in driving and reading were reported. Ocular symptoms were improved and median time to recovery was 23.5 to 44.0 days. EORTC-QLQ-C30 data suggest core MM symptoms (including fatigue and pain), overall HRQOL, and patient functioning were maintained while patients continued belantamab mafodotin treatment, even if meaningful worsening of vision-related symptoms occurred. These PRO results, together with the clinical efficacy of belantamab mafodotin, support its use in patients with RRMM and further evaluation of its use at earlier lines of therapy.

17.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745615

RESUMO

Following infection or vaccination, early-minted antibody secreting cells (ASC) or plasmablasts appear in circulation transiently, and a small fraction migrates to the spleen or bone marrow (BM) to mature into long-lived plasma cells (LLPC). While LLPC, by definition, are quiescent or non-dividing, the majority of blood ASC are thought to be "blasting" or proliferative. In this study, we find >95% nascent blood ASC in culture express Ki-67 but only 6-12% incorporate BrdU after 4h or 24h labeling. In contrast, <5% BM LLPC in culture are Ki-67 + with no BrdU uptake. Due to limitations of traditional flow cytometry, we utilized a novel optofluidic technology to evaluate cell division with simultaneous functional Ig secretion. We find 11% early-minted blood ASC undergo division, and none of the terminally differentiated BM LLPC (CD19 - CD38 hi CD138 + ) divide during the 7-21 days in culture. While BM LLPC undergo complete cell cycle arrest, the process of differentiation into an ASC of plasmablasts discourages entry into S phase. Since the majority of Ki-67 + nascent blood ASC have exited cell cycle and are no longer actively "blasting", the term "plasmablast", which traditionally refers to an ASC that still has the capacity to divide, may probably be a misnomer.

18.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662390

RESUMO

We characterized virus-neutralization and spike-binding antibody profiles in myeloma patients following monovalent or bivalent-SARS-CoV-2 booster vaccination. Vaccination improves the breadth of binding antibodies but not neutralization activity against current variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.

19.
Cancer ; 129(23): 3746-3760, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622738

RESUMO

BACKGROUND: Patients with relapsed/refractory multiple myeloma (RRMM) have a high unmet treatment need. Belantamab mafodotin (belamaf), a first-in-class, B-cell maturation antigen-binding antibody-drug conjugate, eliminates myeloma cells through direct cell killing and an anti-myeloma immune response. METHODS: DREAMM-2 (NCT03525678) was a phase 2, two-arm, open-label trial in patients with heavily pretreated RRMM who had three or more prior therapies, were refractory to an immunomodulatory agent and a proteasome inhibitor, and refractory or intolerant to an anti-CD38 monoclonal antibody. Belamaf was given at 2.5 or 3.4 mg/kg every 3 weeks. The primary end point was overall response rate (ORR); secondary end points included progression-free survival (PFS), overall survival (OS), safety, ocular symptoms, and health-related quality of life (HRQOL). RESULTS: This final analysis (cutoff date, March 31, 2022), N = 223, with median follow-up of 12.5 and 13.8 months, demonstrated an ORR of 32% and 35%, median PFS of 2.8 and 3.9 months, and median OS of 15.3 and 14.0 months in the 2.5 mg/kg and 3.4 mg/kg cohorts, respectively. Median duration of response was 12.5 and 6.2 months. No new safety signals were observed; the most common Grade 3 and 4 adverse events were keratopathy (29% vs. 25%), thrombocytopenia (22% vs. 29%), and anemia (21% vs. 28%). HRQOL outcomes suggest that overall global health status/quality of life, physical and role functioning, and overall disease symptoms were maintained or improved during treatment. CONCLUSIONS: This final analysis of DREAMM-2 confirms that in patients with triple-class refractory RRMM, single-agent belamaf results in durable and clinically meaningful responses with a manageable safety profile.


Assuntos
Mieloma Múltiplo , Humanos , Qualidade de Vida , Resultado do Tratamento , Anticorpos Monoclonais Humanizados/uso terapêutico
20.
Haematologica ; 108(11): 2894-2912, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37608773

RESUMO

To improve the outcomes of patients with the otherwise incurable hematologic malignancy of multiple myeloma (MM), a key paradigm includes initial treatment to establish disease control rapidly followed by maintenance therapy to ensure durability of response with manageable toxicity. However, patients' prognosis worsens after relapse, and the disease burden and drug toxicities are generally more challenging with subsequent lines of therapy. It is therefore particularly important that patients with newly diagnosed multiple myeloma (NDMM) receive optimal frontline therapy. The combination of lenalidomide, bortezomib, and dexamethasone (RVd) has consistently demonstrated a tolerable safety profile with significant and clinically relevant benefit, including deep and durable responses with improved survival in patients with NDMM regardless of their transplant eligibility. Furthermore, comparative studies evaluating this triplet regimen against both doublet and other triplet regimens have established RVd as a standard of care in this setting based upon its remarkable and concordant efficacy. Given the breadth of clinical data, physician familiarity, inclusion in treatment guidelines, and the emerging potential of RVd-containing quadruplet regimens, RVd will likely continue as a key cornerstone of the treatment of NDMM, and its role will therefore likely continue to grow as a therapeutic backbone in the initial treatment of MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Bortezomib/uso terapêutico , Lenalidomida/uso terapêutico , Dexametasona/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...