Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786693

RESUMO

Cryptococcus neoformans is a lethal fungus that primarily affects the respiratory system and the central nervous system. One of the main virulence factors is the capsule, constituted by the polysaccharides glucuronoxylomannan (GXM) and glucuronoxylomanogalactan (GXMGal). Polysaccharides are immunomodulators. One of the target cell populations for modulation are macrophages, which are part of the first line of defense and important for innate and adaptive immunity. It has been reported that macrophages can be modulated to act as a "Trojan horse," taking phagocytosed yeasts to strategic sites or having their machinery activation compromised. The scarcity of information on canine cryptococcosis led us to assess whether the purified capsular polysaccharides from C. neoformans would be able to modulate the microbicidal action of macrophages. In the present study, we observed that the capsular polysaccharides, GXM, GXMGal, or capsule total did not induce apoptosis in the DH82 macrophage cell line. However, it was possible to demonstrate that the phagocytic activity was decreased after treatment with polysaccharides. In addition, recovered yeasts from macrophages treated with polysaccharides after phagocytosis could be cultured, showing that their viability was not altered. The polysaccharides led to a reduction in ROS production and the mRNA expression of IL-12 and IL-6. We observed that GXMGal inhibits MHC class II expression and GXM reduces ERK phosphorylation. In contrast, GXMGal and GXM were able to increase the PPAR-γ expression. Furthermore, our data suggest that capsular polysaccharides can reduce the microbicidal activity of canine macrophages DH82.

2.
Viruses ; 14(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36146755

RESUMO

Viral coinfections can modulate the severity of parasitic diseases, such as human cutaneous leishmaniasis. Leishmania parasites infect thousands of people worldwide and cause from single cutaneous self-healing lesions to massive mucosal destructive lesions. The transmission to vertebrates requires the bite of Phlebotomine sandflies, which can also transmit Phlebovirus. We have demonstrated that Leishmania infection requires and triggers the Endoplasmic stress (ER stress) response in infected macrophages. In the present paper, we tested the hypothesis that ER stress is increased and required for the aggravation of Leishmania infection due to coinfection with Phlebovirus. We demonstrated that Phlebovirus Icoaraci induces the ER stress program in macrophages mediated by the branches IRE/XBP1 and PERK/ATF4. The coinfection with L. amazonensis potentiates and sustains the ER stress, and the inhibition of IRE1α or PERK results in poor viral replication and decreased parasite load in macrophages. Importantly, we observed an increase in viral replication during the coinfection with Leishmania. Our results demonstrated the role of ER stress branches IRE1/XBP1 and PERK/ATF4 in the synergic effect on the Leishmania increased load during Phlebovirus coinfection and suggests that Leishmania infection can also increase the replication of Phlebovirus in macrophages.


Assuntos
Coinfecção , Leishmania , Leishmaniose , Orthobunyavirus , Phlebovirus , Animais , Endorribonucleases , Humanos , Proteínas Serina-Treonina Quinases
3.
Infect Immun ; 90(9): e0032422, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993771

RESUMO

The protozoan parasite Leishmania (L.) amazonensis infects and replicates inside host macrophages due to subversion of the innate host cell response. In the present study, we demonstrate that TLR3 is required for the intracellular growth of L. (L.) amazonensis. We observed restricted intracellular infection of TLR3-/- mouse macrophages, reduced levels of IFN1ß and IL-10, and increased levels of IL-12 upon L. (L.) amazonensis infection, compared with their wild-type counterparts. Accordingly, in vivo infection of TLR3-/- mice with L. (L.) amazonensis displayed a significant reduction in lesion size. Leishmania (L.) amazonensis infection induced TLR3 proteolytic cleavage, which is a process required for TLR3 signaling. The chemical inhibition of TLR3 cleavage or infection by CPB-deficient mutant L. (L.) mexicana resulted in reduced parasite load and restricted the expression of IFN1ß and IL-10. Furthermore, we show that the dsRNA sensor molecule PKR (dsRNA-activated protein kinase) cooperates with TLR3 signaling to potentiate the expression of IL-10 and IFN1ß and parasite survival. Altogether, our results show that TLR3 signaling is engaged during L. (L.) amazonensis infection and this component of innate immunity modulates the host cell response.


Assuntos
Leishmania mexicana , Leishmaniose , Parasitos , Receptor 3 Toll-Like , Animais , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Leishmania mexicana/metabolismo , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Camundongos , Parasitos/metabolismo , Proteínas Quinases/metabolismo , Receptor 3 Toll-Like/metabolismo
4.
Front Immunol ; 13: 801182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154115

RESUMO

Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-ß). Here, we show that the gene expression of IFN-ß by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2-/- mice, while the levels in macrophages from myd88-/- mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2-/- macrophages completely abolished induction of IFN-ß gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2-/-) or from protein kinase R (PKR) knock-out mice (pkr-/-), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr-/- macrophages but was fully restored by the addition of exogenous IFN-ß, and parasite burdens were reduced in the spleen of pkr-/- mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development.


Assuntos
Interferon-alfa/metabolismo , Interferon beta/metabolismo , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos Peritoneais/imunologia , Transdução de Sinais/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , eIF-2 Quinase/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Feminino , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Técnicas de Inativação de Genes , Interferon-alfa/genética , Interferon beta/genética , Leishmaniose Visceral/parasitologia , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sulfonamidas/farmacologia , Receptor 2 Toll-Like/genética , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/imunologia , eIF-2 Quinase/genética
5.
Front Immunol ; 11: 886, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477357

RESUMO

Macrophages host Leishmania major infection, which causes cutaneous Leishmaniasis in humans. In the murine model, resistance to infection depends on the host immunity mediated by CD4 T-cell cytokines and macrophages. In association to other stimuli, the Th1 cytokine IFN-γ induces NO-mediated microbial killing by M1/classically-activated macrophages. By contrast, the Th2 cytokine IL-4 promotes M2/alternatively activated macrophages, which express arginase-1 and shelter infection. Other cytokines, such as RANKL, might also participate in the crosstalk between T cells and macrophages to restrict parasite infection. RANKL and its receptor RANK are known to play an essential role in bone remodeling, by inducing osteoclatogenesis. It has also been shown that RANKL stimulates antigen-presenting cells, such as DCs and macrophages, to enhance T cell responses. Here we investigated how RANKL directly modulates the effector macrophage phenotypes and immunity to L. major parasites. We found that inflammatory peritoneal macrophages from B6 mice express RANK and M2 features, such as CD301 (MGL) and CD206 (mannose receptor). Nonetheless, treatment with RANKL or IFN-γ induced macrophage differentiation into more mature F40/80hi macrophages able to produce IL-12 and TNF-α. In parallel, macrophages treated with RANKL, IFN-γ, or RANKL along with IFN-γ progressively downregulated the expression of the M2 hallmarks MGL, arginase-1, and CCL17. Moreover, a synergism between IFN-γ and RANKL enhanced inducible NO synthase (iNOS) expression and NO production by macrophages. These results are consistent with the idea that RANKL helps IFN-γ to induce a M2-like to M1 phenotype shift. Accordingly, concomitant treatment with RANKL and IFN-γ promoted macrophage-mediated immunity to L. major, by inducing NO and ROS-dependent parasite killing. Furthermore, by cooperating with IFN-γ, endogenous RANKL engages CD4 T-cell help toward L. major-infected macrophages to upregulate M1 and Th1 cytokine responses. Therefore, RANKL, in combination with IFN-γ, is a potential local therapeutic tool to improve immune responses in Leishmaniasis, by skewing M2-like into effector M1 macrophages.


Assuntos
Diferenciação Celular/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/parasitologia , Ligante RANK/imunologia , Animais , Leishmania major , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais
6.
Eur J Immunol ; 48(7): 1188-1198, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29645094

RESUMO

The induced expression of nitric oxide synthase (iNOS) controls the intracellular growth of Leishmania in infected macrophages. Histones deacetylases (HDACs) negatively regulate gene expression through the formation of complexes containing transcription factors such as NF-κB p50/50. Herein, we demonstrated the occupancy of p50/p50_HDAC1 to iNOS promoter associated with reduced levels of H3K9Ac. Remarkably, we found increased levels of HDAC1 in L. amazonensis-infected macrophages. HDAC1 upregulation was not found in L. major-infected macrophages. The parasite intracellular load was reduced in HDAC1 knocked-down macrophages, which presented increased nitric oxide levels. HDAC1 silencing led to the occupancy of CBP/p300 to iNOS promoter and the rise of H3K9Ac modification. Importantly, the immunostaining of skin samples from hiporeactive cutaneous leishmaniasis patients infected with L. amazonensis, revealed high levels of HDAC1. In brief, L. amazonensis induces HDAC1 in infected macrophages, which contribute to parasite survival and is associated to hiporeactive stage found in L. amazonensis infected patients.


Assuntos
Histona Desacetilase 1/metabolismo , Leishmania braziliensis/fisiologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Pele/patologia , Adolescente , Adulto , Células Cultivadas , Criança , Extinção Biológica , Feminino , Histona Desacetilase 1/genética , Interações Hospedeiro-Parasita , Humanos , Evasão da Resposta Imune , Leishmaniose Cutânea/genética , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Carga Parasitária , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Interferente Pequeno/genética , Fator de Transcrição Sp1/metabolismo , Adulto Jovem
7.
Sci Rep ; 7(1): 17074, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213084

RESUMO

Leishmania parasites utilize adaptive evasion mechanisms in infected macrophages to overcome host defenses and proliferate. We report here that the PERK/eIF2α/ATF4 signaling branch of the integrated endoplasmic reticulum stress response (IERSR) is activated by Leishmania and this pathway is important for Leishmania amazonensis infection. Knocking down PERK or ATF4 expression or inhibiting PERK kinase activity diminished L. amazonensis infection. Knocking down ATF4 decreased NRF2 expression and its nuclear translocation, reduced HO-1 expression and increased nitric oxide production. Meanwhile, the increased expression of ATF4 and HO-1 mRNAs were observed in lesions derived from patients infected with the prevalent related species L.(V.) braziliensis. Our data demonstrates that Leishmania parasites activate the PERK/eIF2α/ATF-4 pathway in cultured macrophages and infected human tissue and that this pathway is important for parasite survival and progression of the infection.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Leishmaniose Cutânea/patologia , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Animais , Estresse do Retículo Endoplasmático , Células HEK293 , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Leishmania/patogenicidade , Leishmaniose Cutânea/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Fosforilação , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/metabolismo
8.
FASEB J ; 30(4): 1557-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26678450

RESUMO

Endoplasmic reticulum (ER) stress triggers the integrated ER-stress response (IERSR) that ensures cellular survival of ER stress and represents a primordial form of innate immunity. We investigated the role of IERSR duringLeishmania amazonensisinfection. Treatment of RAW 264.7 infected macrophages with the ER stress-inducing agent thapsigargin (TG; 1 µM) increasedL. amazonensisinfectivity in an IFN1-α receptor (IFNAR)-dependent manner. In Western blot assays, we showed thatL. amazonensisactivates the inositol-requiring enzyme (IRE1)/ X-box binding protein (XBP)-1-splicing arms of the IERSR in host cells. In chromatin immunoprecipitation (ChIP) assays, we showed an increased occupancy of enhancer and promoter sequences for theIfnbgene by XBP1 in infected RAW 264.7 cells. Knocking down XBP1 expression by transducing RAW 264.7 cells with the short hairpin XBP1 lentiviral vector significantly reduced the parasite proliferation associated with impaired translocation of phosphorylated IFN regulatory transcription factor (IRF)-3 to the nucleus and a decrease in IFN1-ß expression. Knocking down XBP1 expression also increased NO concentration, as determined by Griess reaction and reduced the expression of antioxidant genes, such as heme oxygenase (HO)-1, that protect parasites from oxidative stress. We conclude thatL. amazonensisactivation of XBP1 plays a critical role in infection by protecting the parasites from oxidative stress and increasing IFN1-ß expression.-Dias-Teixeira, K. L., Calegari-Silva, T. C., Dos Santos, G. R. R. M., Vitorino dos Santos, J., Lima, C., Medina, J. M., Aktas, B. H., Lopes, U. G. The integrated endoplasmic reticulum stress response inLeishmania amazonensismacrophage infection: the role of X-box binding protein 1 transcription factor.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Leishmania/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Linhagem Celular , Proteínas de Ligação a DNA/genética , Expressão Gênica , Células HEK293 , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interações Hospedeiro-Parasita , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tapsigargina/farmacologia , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
9.
Open Biol ; 5(9): 150118, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26400473

RESUMO

Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3ß in infected macrophages, which is associated with GSK3ß inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression.


Assuntos
Leishmania/fisiologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Dimerização , Regulação para Baixo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Leishmania/genética , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leishmaniose/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/química , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
10.
Immunobiology ; 220(4): 437-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25466588

RESUMO

The protozoan parasite Leishmania infects and replicates in macrophages, causing a spectrum of diseases in the human host, varying from cutaneous to visceral clinical forms. It is known that cytokines modulate the immunological response against Leishmania and are relevant for infection resolution. Here, we report that Interleukin (IL)-27 increases Leishmania amazonensis replication in human and murine macrophages and that the blockage of the IL-10 receptor on the surface of infected cells abolished the IL-27-mediated enhancement of Leishmania growth. IL-27 induced the activation/phosphorylation of protein kinase R (PKR) in macrophages, and PKR blockage or PKR gene deletion abrogated the enhancement of the parasite growth driven by IL-27, as well as the L. amazonensis-induced macrophage production of IL-27. We also observed that L. amazonensis-induced expression of IL-27 depends on type I interferon signaling and the engagement of Toll-like receptor 2. Treatment of Leishmania-infected mice with IL-27 increased lesion size and parasite loads in the footpad and lymph nodes of infected animals, indicating that this cytokine exerts a local and a systemic effect on parasite growth and propagation. In conclusion, we show that IL-27 is a L. amazonensis-enhancing factor and that the PKR/IFN1 axis and IL-10 are critical mediators of this IL-27 induced effect.


Assuntos
Interleucina-10/metabolismo , Interleucina-27/metabolismo , Leishmania mexicana , Leishmaniose Cutânea/metabolismo , Transdução de Sinais , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Humanos , Interferon Tipo I/metabolismo , Interleucina-27/farmacologia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , eIF-2 Quinase/genética
11.
PLoS Negl Trop Dis ; 6(9): e1787, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970332

RESUMO

BACKGROUND: Chemotherapy for leishmaniasis, a disease caused by Leishmania parasites, is expensive and causes side effects. Furthermore, parasite resistance constitutes an increasing problem, and new drugs against this disease are needed. In this study, we examine the effect of the compound 8,10,18-trihydroxy-2,6-dolabelladiene (Dolabelladienetriol), on Leishmania growth in macrophages. The ability of this compound to modulate macrophage function is also described. METHODOLOGY/PRINCIPAL FINDINGS: Leishmania-infected macrophages were treated with Dolabelladienetriol, and parasite growth was measured using an infectivity index. Nitric oxide (NO), TNF-α and TGF-ß production were assayed in macrophages using specific assays. NF-kB nuclear translocation was analyzed by western blot. Dolabelladienetriol inhibited Leishmania in a dose-dependent manner; the IC(50) was 44 µM. Dolabelladienetriol diminished NO, TNF-α and TGF-ß production in uninfected and Leishmania-infected macrophages and reduced NF-kB nuclear translocation. Dolabelladienetriol inhibited Leishmania infection even when the parasite growth was exacerbated by either IL-10 or TGF-ß. In addition, Dolabelladienetriol inhibited Leishmania growth in HIV-1-co-infected human macrophages. CONCLUSION: Our results indicate that Dolabelladienetriol significantly inhibits Leishmania in macrophages even in the presence of factors that exacerbate parasite growth, such as IL-10, TGF-ß and HIV-1 co-infection. Our results suggest that Dolabelladienetriol is a promising candidate for future studies regarding treatment of leishmaniasis, associated or not with HIV-1 infection.


Assuntos
Antiprotozoários/farmacologia , Extratos Celulares/farmacologia , Diterpenos/farmacologia , Leishmania/efeitos dos fármacos , Phaeophyceae/química , Animais , Antiprotozoários/isolamento & purificação , Extratos Celulares/isolamento & purificação , Células Cultivadas , Diterpenos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Leishmania/crescimento & desenvolvimento , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Testes de Sensibilidade Parasitária , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
BMC Res Notes ; 5: 292, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22695124

RESUMO

BACKGROUND: Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS) stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. RESULTS: We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. CONCLUSIONS: The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis.


Assuntos
Anti-Inflamatórios/farmacologia , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Inflamação/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Talidomida/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
J Biol Chem ; 285(43): 32844-32851, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20729208

RESUMO

Infectious diseases that cause hemolysis are among the most threatening human diseases, because of severity and/or global distribution. In these conditions, hemeproteins and heme are released, but whether heme affects the inflammatory response to microorganism molecules remains to be characterized. Here, we show that heme increased the lethality and cytokine secretion induced by LPS in vivo and enhanced the secretion of cytokines by macrophages stimulated with various agonists of innate immune receptors. Activation of nuclear factor κB (NF-κB) and MAPKs and the generation of reactive oxygen species were essential to the increase in cytokine production induced by heme plus LPS. This synergistic effect of heme and LPS was blocked by a selective inhibitor of spleen tyrosine kinase (Syk) and was abrogated in dendritic cells deficient in Syk. Moreover, inhibition of Syk and the downstream molecules PKC and PI3K reduced the reactive oxygen species generation by heme. Our results highlight a mechanism by which heme amplifies the secretion of cytokines triggered by microbial molecule activation and indicates possible pathways for therapeutic intervention during hemolytic infectious diseases.


Assuntos
Heme/imunologia , Imunidade Inata/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipopolissacarídeos/imunologia , Macrófagos Peritoneais/imunologia , Proteínas Tirosina Quinases/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Heme/agonistas , Heme/metabolismo , Heme/farmacologia , Humanos , Imunidade Inata/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/agonistas , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/genética , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinase Syk
14.
FASEB J ; 24(2): 617-26, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19812373

RESUMO

The evolution of Leishmania infection depends on the balance between microbicidal and suppressor macrophage functions. Double-stranded RNA (dsRNA)-activated protein kinase R (PKR), a classic antiviral protein, is able to regulate a number of signaling pathways and macrophage functions. We investigated the possible role of PKR in the modulation of Leishmania infection. Our data demonstrated that Leishmania amazonensis infection led to PKR activation and increased PKR levels. Consistently, in macrophages from PKR knockout 129Sv/Ev mice and RAW-264.7 cells stably expressing a dominant-negative (DN) construct of PKR (DN-PKR), L. amazonensis infection was strongly reduced. The treatment of infected macrophages with the synthetic double-stranded RNA poly(I:C), a potent PKR inductor, increased L. amazonensis intracellular proliferation. This effect was reversed by 2-aminopurine (2-AP), a pharmacological inhibitor of PKR, as well as by the expression of DN-PKR. NO release induced by dsRNA treatment was inhibited by L. amazonensis through NF-kappaB modulation. PKR activation induced by dsRNA also resulted in IL-10 production, whose neutralization with specific antibody completely abrogated L. amazonensis proliferation. Our data demonstrated a new role of PKR in protozoan parasitic infection through IL-10 modulation.


Assuntos
Leishmania/patogenicidade , Macrófagos/parasitologia , eIF-2 Quinase/metabolismo , 2-Aminopurina/farmacologia , Animais , Ativação Enzimática , Humanos , Interleucina-10/metabolismo , Leishmania/genética , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Poli I-C/farmacologia , RNA de Cadeia Dupla/genética
15.
Planta Med ; 76(4): 325-30, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19787569

RESUMO

The aqueous fraction of the ethanolic extract of the plant CISSAMPELOS SYMPODIALIS (Menispermaceae) was previously described to inhibit B cell function. The alkaloid warifteine is the major component of this extract. In the present study we investigated the effect of warifteine on B lymphocyte function and characterized its mechanism of action. Purified splenic murine B lymphocytes were stimulated with either Toll-like receptor (TLR) ligands (LPS, Pam (3)Cys and CpG oligodeoxynucleotides) or anti-IgM antibody and the effect of warifteine on B cell response was investigated. Warifteine inhibited both the proliferative response and immunoglobulin (Ig) secretion induced by these stimuli. Kinetics studies demonstrated that warifteine blocked B cell function even when added after 24 h of a 72 h culture. The inhibitory effect of warifteine was also detected in cultures activated by phorbol myristate acetate and calcium ionophore. We investigated the signal transduction pathways blocked by warifteine. It did not modify the total protein phosphorylation pattern in LPS and anti-IgM-stimulated B cell cultures. It did, however, decrease the rise in intracellular calcium levels, the phosphorylation of the mitogen activated protein kinase (MAPK) ERK and the intranuclear levels of the transcription factor NFkappaB. Warifteine also induced an increase in cAMP and its effect on LPS-induced proliferation was mimicked by the control adenyl cyclase activator forskolin. IN VIVO Ig production induced by the TI-2 antigen TNP-ficoll was also inhibited by warifteine. Taking together, our data suggest that warifteine is a potent inhibitor of B cell response both IN VITRO and IN VIVO and that this effect may be due to the induction of increased intracellular cAMP levels, suggesting that this substance may be useful as a modulator of B cell function.


Assuntos
Alcaloides/farmacologia , Linfócitos B/efeitos dos fármacos , Cissampelos/química , Fatores Imunológicos/farmacologia , Extratos Vegetais/farmacologia , Adenilil Ciclases/metabolismo , Alcaloides/isolamento & purificação , Animais , Anticorpos Anti-Idiotípicos , Linfócitos B/metabolismo , Calcimicina/farmacologia , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ficoll/análogos & derivados , Imunoglobulinas/metabolismo , Fatores Imunológicos/isolamento & purificação , Ionóforos/farmacologia , Ligantes , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fosforilação , Extratos Vegetais/química , Folhas de Planta , Transdução de Sinais/efeitos dos fármacos , Baço/imunologia , Acetato de Tetradecanoilforbol , Receptores Toll-Like , Trinitrobenzenos
16.
Immunol Lett ; 127(1): 19-26, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19712696

RESUMO

Host invasion by pathogens is frequently associated with the activation of nuclear factor kappaB (NF-kappaB), which modulates the expression of genes involved in the immunological response of the host. However, pathogens may also subvert these mechanisms to secure their survival. We describe the effect of Leishmania amazonensis infection on NF-kappaB transcriptional factor activation in macrophages and the subsequent reduction in inducible nitric oxide synthase (iNOS) expression. L. amazonensis promastigote infection activates the p50/p50 NF-kappaB complex, a classic transcriptional repressor. Interestingly, L. amazonensis promotes the change of the classical p65/p50 NF-kappaB dimer induced by LPS, leading to the p50/p50 NF-kappaB complex activation in macrophages stimulated with LPS. Moreover, this parasite promotes the reduction of p65 total levels in infected macrophages. All these effects contribute to the observation that this parasite is able to restrain the NF-kappaB-dependent transcriptional activity induced by LPS. Strikingly, L. amazonensis reduces the mRNA levels of the iNOS in addition to protein expression and the production of nitric oxide in LPS-stimulated macrophages. Accordingly, as revealed by reporter-gene assays, L. amazonensis-induced iNOS repression requires NF-kappaB sites in the iNOS promoter region. In summary, our results suggest that L. amazonensis has developed an adaptive strategy to escape from host defense by activating the NF-kappaB repressor complex p50/p50. The activation of this specific host transcriptional response negatively regulates the expression of iNOS, favoring the establishment and success of L. amazonensis infection.


Assuntos
Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Linhagem Celular , Repressão Enzimática , Interações Hospedeiro-Patógeno , Humanos , Leishmania/patogenicidade , Leishmaniose/enzimologia , Leishmaniose/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Subunidade p50 de NF-kappa B/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Ativação Transcricional
17.
Toxicon ; 50(3): 400-10, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17537472

RESUMO

We have showed that a phospholipase A(2) isolated from Lachesis muta snake venom, denoted LM-PLA(2)-I, had some biological effects. Here, we examined its effects on lymphocytes. Pre-incubation of human peripheral blood lymphocytes with LM-PLA(2)-I plus phosphatidylcholine (PC) stimulated the natural killer (NK) activity. This was accompanied by DNA binding of nuclear transcription factor kappaB and the increase in PKC activity with translocation of the enzyme from the cytoplasma into the plasma membrane. These effects were reproduced when lymphocytes were pre-incubated with commercial lysophosphatidylcholine (LPC) and abolished by stausrosporin or p-bromophenacyl bromide. Evaluation of phosphorylated PKC isoforms showed that pre-incubation with LPC activated the autophosphorylation of the PKCzeta isoform. Taken together, these results confirm that the enzymatic activity of the phospholipase A(2) present in L. muta venom is for the biological activity of the snake venom, and strongly suggest that the LPC produced may be acting as a modulator of PKC isoforms.


Assuntos
Venenos de Crotalídeos/química , Venenos de Crotalídeos/enzimologia , Células Matadoras Naturais/efeitos dos fármacos , Lisofosfatidilcolinas/metabolismo , Fosfolipases A/metabolismo , Proteína Quinase C/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Lisofosfatidilcolinas/farmacologia , Fosfatidilcolinas/metabolismo , Fosfolipases A2 , Fosforilação , Isoformas de Proteínas , Estaurosporina/farmacologia , Viperidae/metabolismo
18.
Immunol Lett ; 110(1): 82-5, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17462745

RESUMO

Previous studies have demonstrated the importance of the ubiquitin-proteasome pathway in the immune response to bacterial pathogens. To investigate the role of this system in the context of leprosy, Mycobacterium leprae-stimulated peripheral blood mononuclear cells (PBMC) were treated with the proteasome inhibitor MG132 to assess the levels of apoptosis and cytokine secretion. The results showed that the inhibition of proteasome activity significantly reduced M. leprae-mediated cell death. In addition, MG132 treatment led to a significant decrease in M. leprae-induced TNF-alpha and IL-10 secretion. Together, these results suggest that modulations of the ubiquitin-proteasome pathway may participate in the human response to M. leprae.


Assuntos
Inibidores de Cisteína Proteinase/farmacologia , Citocinas/biossíntese , Leupeptinas/farmacologia , Mycobacterium leprae/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Apoptose , Morte Celular/efeitos dos fármacos , Humanos , Interleucina-10/metabolismo , Hanseníase/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Mycobacterium leprae/fisiologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
Biochem Biophys Res Commun ; 335(1): 20-6, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16055086

RESUMO

Mycobacterium leprae, the causative agent of leprosy, invades peripheral nerve Schwann cells, resulting in deformities associated with this disease. NF-kappaB is an important transcription factor involved in the regulation of host immune antimicrobial responses. We aimed in this work to investigate NF-kappaB signaling pathways in the human ST88-14 Schwannoma cell line infected with M. leprae. Gel shift and supershift assays indicate that two NF-kappaB dimers, p65/p50 and p50/p50, translocate to the nucleus in Schwann cells treated with lethally irradiated M. leprae. Consistent with p65/p50 and p50/p50 activation, we observed IkappaB-alpha degradation and reduction of p105 levels. The nuclear translocation of p50/p50 complex due to M. leprae treatment correlated with repression of NF-kappaB-driven transcription induced by TNF-alpha. Moreover, thalidomide inhibited p50 homodimer nuclear translocation induced by M. leprae and consequently rescues Schwann cells from NF-kappaB-dependent transcriptional repression. Here, we report for the first time that M. leprae induces NF-kappaB activation in Schwann cells and thalidomide is able to modulate this activation.


Assuntos
Mycobacterium leprae/fisiologia , NF-kappa B/metabolismo , Células de Schwann/metabolismo , Células de Schwann/microbiologia , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Regulação para Baixo , Humanos , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/química , Células de Schwann/efeitos dos fármacos , Talidomida/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
20.
J Immunol ; 174(10): 6314-21, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15879131

RESUMO

During Trypanosoma cruzi infection, T cells up-regulate caspase-8 activity. To assess the role of caspase-8 in T cell-mediated immunity, we investigated the effects of caspase-8 inhibition on T cells in viral FLIP (v-FLIP) transgenic mice. Compared with wild-type controls, increased parasitemia was observed in v-FLIP mice infected with T. cruzi. There was a profound decrease in expansion of both CD4 and CD8 T cell subsets in the spleens of infected v-FLIP mice. We did not find differences in activation ratios of T cells from transgenic or wild-type infected mice. However, the numbers of memory/activated CD4 and CD8 T cells were markedly reduced in v-FLIP mice, possibly due to defective survival. We also found decreased production of IL-2 and increased secretion of type 2 cytokines, IL-4 and IL-10, which could enhance susceptibility to infection. Similar, but less pronounced, alterations were observed in mice treated with the caspase-8 inhibitor, zIETD. Furthermore, blockade of caspase-8 by zIETD in vitro mimicked the effects observed on T. cruzi infection in vivo, affecting the generation of activated/memory T cells and T cell cytokine production. Caspase-8 is also required for NF-kappaB signaling upon T cell activation. Blockade of caspase-8 by either v-FLIP expression or treatment with zIETD peptide decreased NF-kappaB responses to TCR:CD3 engagement in T cell cultures. These results suggest a critical role for caspase-8 in the establishment of T cell memory, cell signaling, and regulation of cytokine responses during protozoan infection.


Assuntos
Caspases/fisiologia , Doença de Chagas/imunologia , Citocinas/biossíntese , Células Th2/enzimologia , Células Th2/imunologia , Trypanosoma cruzi/imunologia , Animais , Caspase 8 , Inibidores de Caspase , Caspases/biossíntese , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Doença de Chagas/enzimologia , Doença de Chagas/genética , Citocinas/metabolismo , Predisposição Genética para Doença , Imunidade Celular/genética , Imunidade Inata/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligopeptídeos/farmacologia , Células Th2/citologia , Células Th2/metabolismo , Regulação para Cima/genética , Regulação para Cima/imunologia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...