Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 30(12): 4428-39, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20335479

RESUMO

Many Ig superfamily members are expressed in the developing nervous system, but the functions of these molecules during neurogenesis are not all clear. Here, we explore the expression and function of one of members of this superfamily, protogenin (PRTG), in the developing nervous system. Expression of PRTG protein is strong in the neural tube of mouse embryos between embryonic days 7.75 and 9.5 but disappears after embryonic day 10.5 when the neural progenitor marker nestin expresses prominently. Perturbation of PRTG activity in P19 embryonal carcinoma cells and in chick embryos, by either RNA interference or a dominant-negative PRTG mutant, increases neuronal differentiation. Using yeast two-hybrid screening and an in situ binding assay, we were able to identify ERdj3 (a stress-inducible endoplasmic reticulum DnaJ homolog) as a putative PRTG ligand. Addition of purified ERdj3 protein into the P19 differentiation assay reduced neurogenesis. This effect was blocked by addition of either a neutralizing antibody against PRTG or purified PRTG ectodomain protein, indicating that the effect of ERdj3 on neurogenesis is mediated through PRTG. Forced expression of ERdj3 in the chick neural tube also impairs neuronal differentiation. Together, these results suggest that expression of PRTG defines a stage between pluripotent epiblasts and committed neural progenitors, and its signaling plays a critical role in suppressing premature neuronal differentiation during early neural development.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana/metabolismo , Tubo Neural/embriologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Diferenciação Celular/genética , Linhagem Celular , Embrião de Galinha , Eletroporação/métodos , Embrião de Mamíferos , Humanos , Imunoprecipitação/métodos , Proteínas de Filamentos Intermediários/metabolismo , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Tubo Neural/citologia , Neurogênese/genética , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção/métodos
2.
Microsc Res Tech ; 71(1): 26-34, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17886343

RESUMO

Exocytosis has been proposed to contain four sequential steps, namely docking, priming, fusion, and recycling, and to be regulated by various proteins-protein interactions. Synaptosomal-associated protein of 25 kDa (SNAP25) has recently been found to bind rabphilin, the Rab3A specific binding protein, in vitro. However, it is still unclear whether SNAP25 and rabphilin interact during exocytosis within cells in vivo. This problem was addressed by the integration of fluorescence resonance energy transfer (FRET) with high sensitivity fluorescence lifetime imaging microscopy (FLIM) to observe this protein-protein interaction. Enhanced green fluorescence protein-labeled SNAP25 (donor) and red fluorescence protein-labeled rabphilin (acceptor) were expressed in neuroendocrine PC12 cells as a FRET pair and ATP stimulation was carried out for various durations. With 10 s stimulation, a 0.17-ns left shift of the lifetime peak was found when compared with donor only. Analysis of the lifetime image further suggested that the lifetime recovered to a similar level as the donor only in a time dependent manner. Four-dimensional (4D) images by FLIM provided useful information indicating that the interaction of SNAP25 and rabphilin occurred particularly within optical sections near cell membrane. Together the results suggest that SNAP25 bound rabphilin loosely at docking step before exocytosis and the binding became tighter at the very start of exocytosis. Finally, these two proteins dissociated after stimulation. To our knowledge, this is the first report to demonstrate the interaction of SNAP25 and rabphilin in situ using the FLIM-FRET technique within neuroendocrine cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Proteínas do Tecido Nervoso/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Células PC12 , Ligação Proteica/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Transfecção , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...