Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404534, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033540

RESUMO

Tumorous bone defects present significant challenges for surgical bio-reconstruction due to the dual pathological conditions of residual tumor presence and extensive bone loss following excision surgery. To address this challenge, a "thermal switch" smart bone scaffold based on the silicene nanosheet-modified decalcified bone matrix (SNS@DBM) is developed by leveraging the natural affinity between collagen and silicene, which is elucidated by molecular dynamics simulations. Benefitting from its exceptional photothermal ability, biodegradability, and bioactivity, the SNS@DBM "thermal switch" provides an integrated postoperative sequential thermotherapy for tumorous bone loss by exerting three levels of photothermal stimulation (i.e., strong, moderate, and nonstimulation). During the different phases of postoperative bioconstruction, the SNS@DBM scaffold realizes simultaneous residual tumor ablation, tumor recurrence prevention, and bone tissue regeneration. These biological effects are verified in the tumor-bearing nude mice of patient-derived tissue xenografts and critical cranium defect rats. Mechanism research prompts moderate heat stimulus generated by and coordinating with SNSs can upregulate osteogenic genes, promote macrophages M2 polarization, and intensify angiogenesis of H-type vessels. This study introduces a versatile approach to the management of tumorous bone defects.

2.
ACS Omega ; 9(15): 17334-17343, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645335

RESUMO

The constituent ions of calcium phosphate in body fluids are in the supersaturated state and tend to form minerals physiologically or pathologically. Inorganic pyrophosphate (PPi) has been considered as one of the most important inhibitors against the formation of calcium phosphate minerals. However, serum PPi concentrations in humans are maintained at a level of several µmol/L, and its effectiveness and mechanism for mineralization inhibition remain ambiguous. Therefore, this work studied the mineralization process in an aqueous solution, explored the effective inhibitory concentration of PPi by titration, and characterized the species during the reactions. We find that PPi at a normal serum concentration does not inhibit mineralization significantly. Such a conclusion was further confirmed in the PPi-added serum. This work indicates that PPi may not be a major direct inhibitor of mineralization in serum and possibly functions via alternative mechanisms.

3.
J Colloid Interface Sci ; 657: 960-970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38096779

RESUMO

Amorphous inorganic solids are traditionally isotropic, thus, it is believed that they only grow in a non-preferential way without the assistance of regulators, leading to the morphologies of nanospheres or irregular aggregates of nanoparticles. However, in the presence of (ortho)phosphate (Pi) and pyrophosphate ions (PPi) which have synergistic roles in biomineralization, the highly elongated amorphous nanowires (denoted ACPPNs) form in a regulator-free aqueous solution (without templates, additives, organics, etc). Based on thorough characterization and tracking of the formation process (e.g., Cryo-TEM, spherical aberration correction high resolution TEM, solid state NMR, high energy resolution monochromated STEM-EELS), the microstructure and its preferential growth behavior are elucidated. In ACPPNs, amorphous calcium orthophosphate and amorphous calcium pyrophosphate are distributed at separated but close sites. The ACPPNs grow via either the preferential attachment of ∼2 nm nanoclusters in a 1-dimension way, or the transformation of bigger nanoparticles, indicating an inherent driving force-governed process. We propose that the anisotropy of ACPPNs microstructure, which is corroborated experimentally, causes their oriented growth. This study proves that, unlike the conventional view, amorphous minerals can form via oriented growth without external regulation, demonstrating a novel insight into the structures and growth behaviors of amorphous minerals.

4.
Adv Healthc Mater ; 12(22): e2300229, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37186211

RESUMO

Pulp exposure often leads to pulp necrosis, root fractures, and ultimate tooth loss. The repair of the exposure site with pulp capping treatment is of great significance to preserving pulp vitality, but its efficacy is impaired by the low bioactivity of capping materials and cell injuries from the local accumulation of oxidative stress. This study develops a Wnt3a-loaded hydroxyapatite nanowire@mesoporous silica (Wnt3a-HANW@MpSi) core-shell nanocomposite for pulp capping treatments. The ultralong and highly flexible hydroxyapatite nanowires provide the framework for the composites, and the mesoporous silica shell endows the composite with the capacity of efficiently loading/releasing Wnt3a and Si ions. Under in vitro investigation, Wnt3a-HANW@MpSi not only promotes the oxidative stress resistance of dental pulp stem cells (DPSCs), enhances their migration and odontogenic differentiation, but also exhibits superior properties of angiogenesis in vitro. Revealed by the transcriptome analysis, the underlying mechanisms of odontogenic enhancement by Wnt3a-HANW@MpSi are closely related to multiple biological processes and signaling pathways toward pulp/dentin regeneration. Furthermore, an animal model of subcutaneous transplantation demonstrates the significant reinforcement of the formation of dentin-pulp complex-like tissues and blood vessels by Wnt3a-HANW@MpSi in vivo. These results indicate the promising potential of Wnt3a-HANW@MpSi in treatments of dental pulp exposure.

5.
Nat Commun ; 11(1): 1546, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210234

RESUMO

Calcium orthophosphates (CaPs) are important in geology, biomineralization, animal metabolism and biomedicine, and constitute a structurally and chemically diverse class of minerals. In the case of dicalcium phosphates, ever since brushite (CaHPO4·2H2O, dicalcium phosphate dihydrate, DCPD) and monetite (CaHPO4, dicalcium phosphate, DCP) were first described in 19th century, the form with intermediary chemical formula CaHPO4·H2O (dicalcium phosphate monohydrate, DCPM) has remained elusive. Here, we report the synthesis and crystal structure determination of DCPM. This form of CaP is found to crystallize from amorphous calcium hydrogen phosphate (ACHP) in water-poor environments. The crystal structure of DCPM is determined to show a layered structure with a monoclinic symmetry. DCPM is metastable in water, but can be stabilized by organics, and has a higher alkalinity than DCP and DCPD. This study serves as an inspiration for the future exploration of DCPM's potential role in biomineralization, or biomedical applications.


Assuntos
Biomineralização , Fosfatos de Cálcio/química , Animais , Linhagem Celular , Cristalização , Células-Tronco Mesenquimais , Metanol/química , Simulação de Dinâmica Molecular , Ratos , Solventes/química , Água/química , Difração de Raios X
6.
ACS Biomater Sci Eng ; 5(10): 4951-4961, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455242

RESUMO

Hydroxyapatite (HAP) biomaterials with high biocompatibility, bioactivity, and osteoconductivity/osteoinductivity have many applications in the biomedical fields. The traditional HAP materials usually feature high brittleness. Although hybridizing HAP with polymers can obtain deformable materials, their deformability is mainly contributed by polymers. Recently, research progress has been made in the deformable HAP biomaterials with high flexibility, softness, or elasticity based on ultralong HAP nanowires (UHANWs). This article provides a brief review on the recent progress on this research topic. Specifically, the strategy is proposed for solving the high brittleness of HAP biomaterials using UHANWs; the synthetic strategies for UHANWs are presented; and a variety of deformable biomaterials based on UHANWs are discussed. This review article provides a new concept of deformable biomaterials consisting of UHANWs and will stimulate new research works on deformable HAP biomaterials and further contribute to their development and applications in the biomedical fields such as bone regeneration, artificial periosteum, skin wound healing, biomedical paper, medical test paper, drug delivery, diagnosis, and therapy.

7.
Small ; 14(51): e1804321, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30417599

RESUMO

In vivo mineralization is a multistep process involving mineral-protein complexes and various metastable compounds in vertebrates. In this complex process, the minerals produced in the mitochondrial matrix play a critical role in initiating extracellular mineralization. However, the functional mechanisms of the mitochondrial minerals are still a mystery. Herein, an in vitro enzymatic reaction strategy is reported for the generation of biomimic amorphous calcium phosphate (EACP) nanominerals by an alkaline phosphatase (ALP)-catalyzed hydrolysis of adenosine triphosphate (ATP) in a weakly alkalescent aqueous condition (pH 8.0-8.5), which is partially similar to the mitochondrial environment. Significantly, the EACP nanomineral obviously promotes autophagy and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by activating an AMPK related pathway, and displays a high performance in promoting bone regeneration. These results provide in vitro evidence for the effect of ATP on the formation and stabilization of the mineral in the mineralization process, demonstrating a potential strategy for the preparation of the biomimic mineral for treating bone related diseases.


Assuntos
Biomimética/métodos , Fosfatase Alcalina/metabolismo , Autofagia/fisiologia , Fosfatos de Cálcio/química , Diferenciação Celular/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia
8.
J Colloid Interface Sci ; 530: 9-15, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29960123

RESUMO

Glycerol citrate polyester based on the condensation of glycerol and citric acid has a great potential in biomedical applications owing to biocompatible monomers and biodegradation properties. However, the applications of glycerol citrate polyester are impaired by its poor mechanical properties and high acidity caused by citric acid produced in the degradation process. In this work, a new kind of nanocomposite has been developed using ultralong hydroxyapatite (HAP) nanowires as the "skeleton", and strongly bound glycerol citrate polyester as the "muscle". The ultralong HAP nanowires interweave with each other to form a three-dimensional nanoporous network, and glycerol citrate polyester is homogeneously distributed in the nanoporous network. Owing to the reinforcement of ultralong HAP nanowires, the mechanical properties of the as-prepared nanocomposite are significantly improved compared with the pure glycerol citrate polyester, and the tensile strength even reaches to the level of human cortical bones. Furthermore, the acidity of the aqueous solution after degradation is neutralized by the reaction between citric acid and ultralong HAP nanowires, and the pH value can be stabilized. The as-prepared nanocomposite can solve some problems of the pure glycerol citrate polyester, and shows promising applications in the biomedical field.


Assuntos
Materiais Biocompatíveis/química , Citratos/química , Durapatita/química , Glicerol/análogos & derivados , Nanocompostos/química , Nanofios/química , Poliésteres/química , Teste de Materiais , Nanocompostos/ultraestrutura , Nanofios/ultraestrutura , Difração de Pó , Resistência à Tração , Difração de Raios X
9.
Chemistry ; 24(2): 416-424, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29072343

RESUMO

To date, the scaled-up production and large-area applications of superhydrophobic coatings are limited because of complicated procedures, environmentally harmful fluorinated compounds, restrictive substrates, expensive equipment, and raw materials usually involved in the fabrication process. Herein, the facile, low-cost, and green production of superhydrophobic coatings based on hydroxyapatite nanowire bundles (HNBs) is reported. Hydrophobic HNBs are synthesised by using a one-step solvothermal method with oleic acid as the structure-directing and hydrophobic agent. During the reaction process, highly hydrophobic C-H groups of oleic acid molecules can be attached in situ to the surface of HNBs through the chelate interaction between Ca2+ ions and carboxylic groups. This facile synthetic method allows the scaled-up production of HNBs up to about 8 L, which is the largest production scale of superhydrophobic paint based on HNBs ever reported. In addition, the design of the 100 L reaction system is also shown. The HNBs can be coated on any substrate with an arbitrary shape by the spray-coating technique. The self-cleaning ability in air and oil, high-temperature stability, and excellent mechanical durability of the as-prepared superhydrophobic coatings are demonstrated. More importantly, the HNBs are coated on large-sized practical objects to form large-area superhydrophobic coatings.

10.
ACS Appl Mater Interfaces ; 9(45): 39534-39548, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29094596

RESUMO

How to survive under various harsh working conditions is a key challenge for flexible electronic devices because their performances are always susceptible to environments. Herein, we demonstrate the novel design and fabrication of a new kind of the all-weather flexible electrically conductive paper based on ultralong hydroxyapatite nanowires (HNs) with unique combination of the superhydrophobic surface, electrothermal effect, and flame retardancy. The superhydrophobic surface with water repellency stabilizes the electrically conductive performance of the paper in water. For example, the electrical current through the superhydrophobic paper onto which water droplets are deposited shows a little change (0.38%), and the electrical performance is steady as well even when the paper is immersed in water for 120 s (just 3.65% change). In addition, the intrinsic electrothermal effect of the electrically conductive paper can efficiently heat the paper to reach a high temperature, for example, 224.25 °C, within 10 s. The synergistic effect between the electrothermal effect and superhydrophobic surface accelerates the melting and removal of ice on the heated electrically conductive paper. Deicing efficiency of the heated superhydrophobic electrically conductive paper is ∼4.5 times that of the unheated superhydrophobic electrically conductive paper and ∼10.4 times that of the heated superhydrophilic paper. More importantly, benefiting from fire-resistant ultralong HNs, thermally stable Ketjen black, and Si-O backbone of poly(dimethylsiloxane), we demonstrate the stable and continuous service of the as-prepared electrically conductive paper in the flame for as long as 7 min. The electrical performance of the electrically conductive paper after flame treatment can maintain as high as 90.60% of the original value. The rational design of the electrically conductive paper with suitable building materials and structure demonstrated here will give an inspiration for the development of new kinds of all-weather flexible electronic devices that can work under harsh conditions.

11.
Colloids Surf B Biointerfaces ; 159: 337-348, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28818781

RESUMO

In the last decade, the porous hydroxyapatite (HAP) scaffold has been investigated for the application in tissue engineering owing to its good bioactivity and high biocompatibility. In this work, the dopamine-modified highly porous hydroxyapatite microtube three-dimensional (3-D) networks with efficient near-infrared photothermal effect, enhanced protein adsorption and mineralization performance have been prepared through a facile method. The dopamine-modified highly porous HAP networks exhibit ultrahigh porosity (90.6%), uniform pore distribution, interconnected pore structure and outstanding mechanical properties. After being modified with dopamine, the protein adsorption amount, cell attachment performance, and mineralization ability of the dopamine-modified highly porous HAP network can be greatly improved. In addition, the as-prepared dopamine-modified highly porous HAP networks exhibit good biocompatibility, excellent near-infrared photothermal effect, and good mechanical properties. The experimental results indicate that the dopamine-modified highly porous HAP networks are promising for various applications.


Assuntos
Durapatita/química , Microtúbulos/metabolismo , Materiais Biocompatíveis/química , Dopamina/química , Porosidade , Engenharia Tecidual/métodos , Alicerces Teciduais/química
12.
J Mater Chem B ; 3(9): 1823-1830, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262255

RESUMO

Calcium phosphate biomaterials are very promising for various biomedical applications owing to their excellent biocompatibility and biodegradability. Calcium phosphate nanostructured materials with a porous and hollow structure are excellent drug carriers due to their advantages such as high biocompatibility, large specific surface area, nanosized channels for drug loading and release, high drug loading capacity and pH-responsive drug release behavior. In this work, porous hollow microspheres of amorphous calcium phosphate have been successfully prepared by the microwave-assisted hydrothermal method using adenosine triphosphate disodium salt, CaCl2 and soybean lecithin in aqueous solution. This preparation method is facile, rapid, energy-saving and environment friendly. The effects of microwave hydrothermal temperature and concentrations of the reactants on the morphology and structure of the product were investigated. The as-prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The as-prepared porous hollow microspheres of amorphous calcium phosphate are efficient for drug loading and release, and the drug delivery system shows a pH-responsive drug release behavior and high ability to damage tumor cells. Thus, the as-prepared porous hollow microspheres of amorphous calcium phosphate are promising for the applications in various biomedical fields.

13.
J Colloid Interface Sci ; 443: 72-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25535849

RESUMO

Amorphous calcium phosphate (ACP) microspheres with a porous and hollow structure have been prepared using an aqueous solution containing CaCl2 as a calcium source, adenosine triphosphate disodium salt (Na2ATP) as a phosphorus source in the presence of a block copolymer methoxyl poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PLA) by the microwave-assisted hydrothermal method. The effects of microwave hydrothermal temperature and the concentrations of CaCl2 and Na2ATP on the crystal phase and morphology of the product are investigated. The as-prepared ACP porous hollow microspheres have a relatively high specific surface area of 232.9 m(2) g(-1) and an average pore size of 9.9 nm. A typical anticancer drug, docetaxel, is used to evaluate the drug loading ability and drug release behavior of ACP porous hollow microspheres in phosphate buffered saline (PBS) with different pH values of 4.5 and 7.4. The experiments reveal that the ACP porous hollow microspheres have a high drug loading capacity and favorable pH-responsive drug release property, and the ACP porous hollow microsphere drug delivery system shows a high ability to damage tumor cells. It is expected that the as-prepared ACP porous hollow microspheres are promising for the applications in various biomedical fields such as drug delivery.


Assuntos
Fosfatos de Cálcio/química , Sistemas de Liberação de Medicamentos , Microesferas , Micro-Ondas , Polímeros/química , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Sobrevivência Celular , Docetaxel , Portadores de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microscopia Eletrônica de Varredura , Porosidade , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Propriedades de Superfície , Taxoides/farmacologia , Difração de Raios X
14.
Colloids Surf B Biointerfaces ; 123: 236-45, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25293870

RESUMO

Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo.


Assuntos
Fosfatos de Cálcio/química , Nanosferas/química , Poliésteres/química , Tantálio/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanocompostos/química , Coelhos , Alicerces Teciduais/efeitos adversos
15.
Chem Asian J ; 9(10): 2908-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100227

RESUMO

Drug nanocarriers with magnetic targeting and pH-responsive drug-release behavior are promising for applications in controlled drug delivery. Magnetic iron oxides show excellent magnetism, but their application in drug delivery is limited by low drug-loading capacity and poor control over drug release. Herein, core-shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate (MIO@ACP) were prepared and investigated as magnetic, pH-responsive drug nanocarriers. Hollow microspheres of magnetic iron oxide (HMIOs) were prepared by etching solid MIO microspheres in hydrochloric acid/ethanol solution. After loading a drug into the HMIOs, the drug-loaded HMIOs were coated with a protective layer of ACP by using adenosine 5'-triphosphate (ATP) disodium salt (Na2 ATP) as stabilizer, and drug-loaded core-shell hollow microspheres of MIO@ACP (HMIOs/drug/ACP) were obtained. The as-prepared HMIOs/drug/ACP drug-delivery system exhibits superparamagnetism and pH-responsive drug-release behavior. In a medium with pH 7.4, drug release was slow, but it was significantly accelerated at pH 4.5 due to dissolution of the ACP shell. Docetaxel-loaded core-shell hollow microspheres of MIO@ACP exhibited high anticancer activity.


Assuntos
Trifosfato de Adenosina/química , Fosfatos de Cálcio/síntese química , Portadores de Fármacos , Compostos Férricos/síntese química , Microesferas , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão
16.
Chemistry ; 20(23): 7116-21, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24753212

RESUMO

Hydroxyapatite (HAP), a well-known member of the calcium phosphate family, is the major inorganic component of bones and teeth in vertebrates. The highly ordered arrays of HAP structures are of great significance for hard tissue repair and for understanding the formation mechanisms of bones and teeth. However, the synthesis of highly ordered HAP structure arrays remains a great challenge. In this work, inspired by the ordered structure of tooth enamel, we have successfully synthesized three-dimensional bulk materials with large sizes (millimeter scale) that are made of highly ordered arrays of ultralong HAP microtubes (HOAUHMs) by solvothermal transformation of calcium oleate precursor. The core-shell-structured oblate sphere consists of a core that is composed of HAP nanorods and a shell that consists of highly ordered HAP microtube arrays. The prepared HOAUHMs are large: 6.0 mm in diameter and up to 1.4 mm in thickness. With increasing solvothermal reaction time, the HOAUHMs grow larger; the microtubes become more uniform and more ordered. This work provides a new synthetic method for synthesizing highly ordered arrays of uniform HAP ultralong microtubes that are promising for biomedical applications.


Assuntos
Cálcio/química , Durapatita/química , Ácido Oleico/química , Solventes/química , Microscopia Eletrônica de Varredura , Temperatura , Difração de Raios X
17.
Small ; 10(10): 2047-56, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24578276

RESUMO

Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption.


Assuntos
Trifosfato de Adenosina/química , Carbonato de Cálcio/química , Nanocápsulas/química , Nanosferas/química , Proteínas/química , Adsorção , Líquidos Corporais/química , Estabilidade de Medicamentos , Excipientes/química , Nanocápsulas/ultraestrutura , Nanosferas/ultraestrutura , Tamanho da Partícula , Ligação Proteica
18.
Chemistry ; 20(5): 1242-6, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24382702

RESUMO

A highly flexible and nonflammable inorganic hydroxyapatite (HAP) paper made from HAP ultralong nanowires is reported. The paper can be used for printing and writing and is promising for the permanent and safe storage of information, such as archives and important documents. The HAP paper is also an excellent and recyclable adsorbent for organic pollutants.

19.
J Colloid Interface Sci ; 418: 208-15, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24461837

RESUMO

Chitosan-coated calcium silicate hydrate (CSH/chitosan) mesoporous microspheres formed by self-assembly of nanosheets have been synthesized in aqueous solution under ambient conditions without using any toxic surfactant or organic solvent. The method reported herein has advantages of simplicity, low cost and being environmentally friendly. The BET specific surface area of CSH/chitosan mesoporous microspheres is measured to be as high as ~356 m(2) g(-1), which is considerably high among calcium silicate materials. The as-prepared CSH/chitosan mesoporous microspheres are promising adsorbent and exhibit a quick and highly efficient adsorption behavior toward heavy metal ions of Ni(2+), Zn(2+), Cr(3+), Pb(2+) Cu(2+) and Cd(2+) in aqueous solution. The adsorption kinetics can be well fitted by the pseudo second-order model. The maximum adsorption amounts of Ni(2+), Zn(2+), Pb(2+), Cu(2+) and Cd(2+) on CSH/chitosan mesoporous microspheres are extremely high, which are 406.6, 400, 796, 425 and 578 mg/g, respectively. The CSH/chitosan adsorbent exhibits the highest affinity for Pb(2+) ions among five heavy metal ions. The adsorption capacities of the CSH/chitosan adsorbent toward heavy metal ions are relatively high compared with those reported in the literature.


Assuntos
Compostos de Cálcio/química , Quitosana/química , Metais Pesados/isolamento & purificação , Silicatos/química , Ácido Silícico/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Química Verde/economia , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Microesferas , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Mater Chem B ; 2(41): 7132-7140, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32261791

RESUMO

Biodegradable inorganic mesoporous materials hold promise for various biomedical applications such as drug/gene delivery, bioimaging, and photodynamic/photothermal and ultrasound therapy. Herein, multifunctional mesoporous microspheres of europium-doped amorphous calcium phosphate (Eu3+-doped ACP) have been prepared using a natural biomolecule adenosine triphosphate (ATP) by the rapid microwave-assisted solvothermal method. This method has advantages such as surfactant-free, rapid and energy-saving. The ATP molecule plays key roles as a phosphate source and a structure mediator. Furthermore, the Eu3+-doped ACP mesoporous microspheres exhibit advantages such as high specific surface area (from 253 to 315 m2 g-1), high biocompatibility, pH-responsive drug release, and in vitro/in vivo fluorescence imaging properties. The mechanism of pH-responsive drug release can be explained by the degradation of ACP mesoporous microspheres at low pH. The docetaxel-loaded Eu3+-doped ACP mesoporous microspheres showed good anticancer performance in vitro. The as-prepared Eu3+-doped ACP mesoporous microspheres are promising for applications in drug delivery, tissue engineering, bioimaging, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...