Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38669165

RESUMO

Structure-guided image completion aims to inpaint a local region of an image according to an input guidance map from users. While such a task enables many practical applications for interactive editing, existing methods often struggle to hallucinate realistic object instances in complex natural scenes. Such a limitation is partially due to the lack of semantic-level constraints inside the hole region as well as the lack of a mechanism to enforce realistic object generation. In this work, we propose a learning paradigm that consists of semantic discriminators and object-level discriminators for improving the generation of complex semantics and objects. Specifically, the semantic discriminators leverage pretrained visual features to improve the realism of the generated visual concepts. Moreover, the object-level discriminators take aligned instances as inputs to enforce the realism of individual objects. Our proposed scheme significantly improves the generation quality and achieves state-of-the-art results on various tasks, including segmentation-guided completion, edge-guided manipulation and panoptically-guided manipulation on Places2 datasets. Furthermore, our trained model is flexible and can support multiple editing use cases, such as object insertion, replacement, removal and standard inpainting. In particular, our trained model combined with a novel automatic image completion pipeline achieves state-of-the-art results on the standard inpainting task.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(3): 3768-3782, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35696464

RESUMO

We tackle the problem of semantic image layout manipulation, which aims to manipulate an input image by editing its semantic label map. A core problem of this task is how to transfer visual details from the input images to the new semantic layout while making the resulting image visually realistic. Recent work on learning cross-domain correspondence has shown promising results for global layout transfer with dense attention-based warping. However, this method tends to lose texture details due to the resolution limitation and the lack of smoothness constraint on correspondence. To adapt this paradigm for the layout manipulation task, we propose a high-resolution sparse attention module that effectively transfers visual details to new layouts at a resolution up to 512x512. To further improve visual quality, we introduce a novel generator architecture consisting of a semantic encoder and a two-stage decoder for coarse-to-fine synthesis. Experiments on the ADE20k and Places365 datasets demonstrate that our proposed approach achieves substantial improvements over the existing inpainting and layout manipulation methods.

3.
IEEE Trans Vis Comput Graph ; 25(9): 2791-2803, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040646

RESUMO

The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA