Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
J Pharm Biomed Anal ; 248: 116325, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959755

RESUMO

The high prevalence of cancer and detrimental side effects associated with many cancer treatments necessitate the search for effective alternative therapies. Natural products are increasingly being recognized and investigated for their potential therapeutic benefits. Scutellaria barbata D. Don (SBD), a plant with potent antitumor properties, has attracted significant interest from oncology researchers. Its primary flavonoid components-scutellarin and luteolin-which have limited oral bioavailability due to poor absorption. This hinders its application for cancer treatment. The gut microbiota, which is considered a metabolic organ, can modulate the biotransformation of compounds, thereby altering their bioavailability and efficacy. In this study, we employed liquid chromatography tandem mass spectrometry (LC-MS/MS 8060) and ion trap-time of flight (LC-MSn-IT-TOF) analysis to investigate the ex vivo metabolism of scutellarin and luteolin by the gut microbiota. Five metabolites and one potential metabolite were identified. We summarized previous studies on their antitumor effects and performed in vitro tumor cell line studies to prove their antitumor activities. The possible key pathway of gut microbiota metabolism in vitro was validated using molecular docking and pure enzyme metabolic experiments. In addition, we explored the antitumor mechanisms of the two components of SBD through network pharmacology, providing a basis for subsequent target identification. These findings expand our understanding of the antitumor mechanisms of SBD. Notably, this study contributes to the existing body of knowledge regarding flavonoid biotransformation by the gut microbiota, highlighting the therapeutic potential of SBD in cancer treatment. Moreover, our results provide a theoretical basis for future in vivo pharmacokinetic studies, aiming to optimize the clinical efficacy of SBD in oncological applications.


Assuntos
Apigenina , Microbioma Gastrointestinal , Glucuronatos , Luteolina , Scutellaria , Espectrometria de Massas em Tandem , Microbioma Gastrointestinal/efeitos dos fármacos , Luteolina/farmacologia , Luteolina/metabolismo , Luteolina/farmacocinética , Scutellaria/química , Apigenina/farmacologia , Glucuronatos/metabolismo , Humanos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Animais , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Cromatografia Líquida/métodos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/farmacocinética , Disponibilidade Biológica , Masculino , Biotransformação , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética
3.
J Asian Nat Prod Res ; : 1-10, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869213

RESUMO

Liquiritigenin is a natural medicine. However, its inhibitory effect and its potential mechanism on bladder cancer (BCa) remain to be explored. It was found that it could be visualized that the transplanted tumours in the low-dose liquiritigenin -treated group and the high-dose liquiritigenin -treated group were smaller than those in the model group. Liquiritigenin treatment led to alterations in Lachnoclostridium, Escherichia-Shigella, Alistipes and Akkermansia. Non-targeted metabolomics analysis showed that a total of multiple differential metabolites were identified between the model group and the high-dose liquiritigenin-treated group. This provides a new direction and rationale for the antitumour effects of liquiritigenin.

4.
Front Microbiol ; 15: 1389311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784809

RESUMO

Introduction: Cardiovascular diseases, including myocardial infarction, remain a leading cause of death globally. Emerging evidence suggests the gut microbiota plays a crucial role in cardiovascular health. This study aims to explore the impact of gut microbiota on myocardial infarction using a mouse model. Methods: The research utilizes a multi-omics approach, including 16S rDNA sequencing and LC-MS-based metabolomics to analyze fecal and serum samples from mice modeled to mimic myocardial infarction. This methodology allows for a comprehensive analysis of microbial populations and their metabolic output. Results: The findings reveal a significant reduction in gut microbiota α-diversity in mice with induced myocardial infarction compared to healthy controls. Notably, there is an increase in populations of Fusobacteria and Clostridia. Metabolomic analysis indicates disruptions in amino acid and energy metabolism, suggesting a metabolic dysregulation linked to myocardial health. Discussion: The study proposes a novel microbiota-metabolite-myocardium axis, where specific microbial metabolites may directly affect heart health. This connection points to the gut microbiota as a potential player in the pathogenesis of myocardial infarction and may open new therapeutic avenues targeting the gut microbiome to combat cardiovascular diseases.

5.
Phytomedicine ; 128: 155517, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518650

RESUMO

BACKGROUND: Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE: This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS: Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS: Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION: Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.


Assuntos
Berberina , Microbioma Gastrointestinal , Fenilacetatos , Trombose , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Berberina/farmacologia , Berberina/análogos & derivados , Trombose/prevenção & controle , Masculino , Camundongos , Fenilacetatos/farmacologia , Carragenina , Coptis/química , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transplante de Microbiota Fecal , RNA Ribossômico 16S
6.
J Asian Nat Prod Res ; 26(4): 510-518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37705345

RESUMO

Eriocitrin is a flavonoid glycoside with strong antioxidant capacity that has a variety of pharmacological activities, such as hypolipidemic, anticancer and anti-inflammatory effects. We found that the gut microbiota could rapidly metabolize eriocitrin. By using LC/MSn-IT-TOF, we identified three metabolites of eriocitrin metabolized in the intestinal microbiota: eriodictyol-7-O-glucoside, eriodictyol, and dihydrocaffeic acid. By comparing these two metabolic pathways of eriocitrin (the gut microbiota and liver microsomes), the intestinal microbiota may be the primary metabolic site of eriocitrin metabolism. These findings provide a theoretical foundation for the study of pharmacologically active substances.


Assuntos
Flavanonas , Microbioma Gastrointestinal , Antioxidantes/farmacologia , Flavonoides/farmacologia , Biotransformação
7.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005297

RESUMO

Gentiopicrin, the main component of the famous Chinese patent medicine Long Dan Xie Gan Wan, has the characteristics of fast absorption in vivo and low bioavailability. Intestinal bacteria play an important role in the absorption and pharmacokinetics of oral drugs. In this study, the metabolic transformation of gentiopicrin by intestinal bacteria was examined. High-performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry (LC/MSn-IT-TOF) and nuclear magnetic resonance (NMR) were used, and six metabolites were identified, including reduction products (G-M1, G-M2, G-M4, and G-M6), a hydrolytic product (G-M3), and a dehydration product (G-M5) of gentiopicrin aglycone after hydrolysis, reduction, and dehydration reactions were performed by the intestinal flora. This is the first time that chiral metabolites of gentiopicrin (G-M1 and G-M2) were found in this study. In addition, the precursors of glucuronic acid conjugates previously reported in vivo may have come from the intestinal bacterial metabolites G-M1, G-M2, and G-M3. In addition, the metabolic transformation of gentiopicrin in liver microsomes was studied in vitro, and it was found that gentiopicrin did not undergo metabolic transformation under the action of liver microsomes. It is suggested that gentiopicroside may be metabolized in the intestine. This study provides both new insight regarding the investigation of effective substances and an exploration of the pharmacodynamic and toxicological properties of gentiopicrin.


Assuntos
Desidratação , Fígado , Humanos , Desidratação/metabolismo , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Microssomos Hepáticos/metabolismo , Bactérias/metabolismo
8.
J Pharm Anal ; 13(9): 1024-1040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37842660

RESUMO

Specnuezhenide (SNZ) is among the main components of Fructus Ligustri Lucidi, which has anti-inflammation, anti-oxidation, and anti-tumor effect. The low bioavailability makes it difficult to explain the mechanism of pharmacological effect of SNZ. In this study, the role of the gut microbiota in the metabolism and pharmacokinetics characteristics of SNZ as well as the pharmacological meaning were explored. SNZ can be rapidly metabolized by the gut microbiome, and two intestinal bacterial metabolites of SNZ, salidroside and tyrosol, were discovered. In addition, carboxylesterase may be the main intestinal bacterial enzyme that mediates its metabolism. At the same time, no metabolism was found in the incubation system of SNZ with liver microsomes or liver homogenate, indicating that the gut microbiota is the main part involved in the metabolism of SNZ. In addition, pharmacokinetic studies showed that salidroside and tyrosol can be detected in plasma in the presence of gut microbiota. Interestingly, tumor development was inhibited in a colorectal tumor mice model administered orally with SNZ, which indicated that SNZ exhibited potential to inhibit tumor growth, and tissue distribution studies showed that salidroside and tyrosol could be distributed in tumor tissues. At the same time, SNZ modulated the structure of gut microbiota and fungal group, which may be the mechanism governing the antitumoral activity of SNZ. Furthermore, SNZ stimulates the secretion of short-chain fatty acids by intestinal flora in vitro and in vivo. In the future, targeting gut microbes and the interaction between natural products and gut microbes could lead to the discovery and development of new drugs.

9.
Front Cell Infect Microbiol ; 13: 1191936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260696

RESUMO

Numerous studies have demonstrated that gut microbiota plays an important role in the development and treatment of different cardiovascular diseases, including hypertension, heart failure, myocardial infarction, arrhythmia, and atherosclerosis. Furthermore, evidence from recent studies has shown that gut microbiota contributes to the development of myocarditis. Myocarditis is an inflammatory disease that often results in myocardial damage. Myocarditis is a common cause of sudden cardiac death in young adults. The incidence of myocarditis and its associated dilated cardiomyopathy has been increasing yearly. Myocarditis has gained significant attention on social media due to its association with both COVID-19 and COVID-19 vaccinations. However, the current therapeutic options for myocarditis are limited. In addition, little is known about the potential therapeutic targets of myocarditis. In this study, we review (1) the evidence on the gut-heart axis, (2) the crosslink between gut microbiota and the immune system, (3) the association between myocarditis and the immune system, (4) the impact of gut microbiota and its metabolites on myocarditis, (5) current strategies for modulating gut microbiota, (6) challenges and future directions for targeted gut microbiota in the treatment of myocarditis. The approach of targeting the gut microbiota in myocarditis is still in its infancy, and this is the study to explore the gut microbiota-immune system-myocarditis axis. Our findings are expected to pave the way for the use of gut microbiota as a potential therapeutic target in the treatment of myocarditis.


Assuntos
COVID-19 , Cardiomiopatia Dilatada , Microbioma Gastrointestinal , Miocardite , Adulto Jovem , Humanos , Miocardite/terapia , Miocárdio
10.
Acta Pharm Sin B ; 13(4): 1537-1553, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139409

RESUMO

At present, clinical interventions for chronic kidney disease are very limited, and most patients rely on dialysis to sustain their lives for a long time. However, studies on the gut-kidney axis have shown that the gut microbiota is a potentially effective target for correcting or controlling chronic kidney disease. This study showed that berberine, a natural drug with low oral availability, significantly ameliorated chronic kidney disease by altering the composition of the gut microbiota and inhibiting the production of gut-derived uremic toxins, including p-cresol. Furthermore, berberine reduced the content of p-cresol sulfate in plasma mainly by lowering the abundance of g_Clostridium_sensu_stricto_1 and inhibiting the tyrosine-p-cresol pathway of the intestinal flora. Meanwhile, berberine increased the butyric acid producing bacteria and the butyric acid content in feces, while decreased the renal toxic trimethylamine N-oxide. These findings suggest that berberine may be a therapeutic drug with significant potential to ameliorate chronic kidney disease through the gut-kidney axis.

11.
Phytomedicine ; 116: 154841, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37196513

RESUMO

BACKGROUND: Plantaginis Herba (Plantago asiatica L.) has the effects of clearing heat and diuresis, oozing wet and drenching. As the main active components of Plantaginis Herba (Plantago asiatica L.), plantamajoside have a wide range of antitumor activities but very low bioavailability. The process of interacting between plantamajoside and gut microbiota remains unclear. PURPOSE: To illustrate the process of interacting between plantamajoside and gut microbiota based on high-resolution mass spectrometry and targeted metabolomics methods. STUDY DESIGN AND METHODS: This experiment was divided into two parts. First, metabolites produced from plantamajoside by gut microbiota were identified and quantified based on high-resolution mass spectrometry and LC-MS/MS. Additionally, stimulation of plantamajoside on gut microbiota-derived metabolites was determined by targeted metabolomics and gas chromatography. RESULTS: We first found that plantamajoside was rapidly metabolized by gut microbiota. Then, we identified metabolites of plantamajoside by high-resolution mass spectrometry and speculated that plantamajoside was metabolized into five metabolites including calceolarioside A, dopaol glucoside, hydroxytyrosol, 3-(3-hydroxyphenyl) propionic acid (3-HPP) and caffeic acid. Among them, we quantitatively analyzed four possible metabolites based on LC‒MS/MS and found that hydroxytyrosol and 3-HPP were final products by the gut microbiota. In addition, we studied whether plantamajoside could affect the short-chain fatty acid (SCFA) and amino acid metabolites. We found that plantamajoside could inhibit the acetic acid, kynurenic acid (KYNA) and kynurenine (KN) produced by intestinal bacteria and promote the indole propionic acid (IPA) and indole formaldehyde (IALD) produced by intestinal bacteria. CONCLUSION: An interaction between plantamajoside and gut microbiota was revealed in this study. Unlike the traditional metabolic system, the special metabolic characteristics of plantamajoside in gut microbiota was found. Plantamajoside was metabolized into the following active metabolites: calceolarioside A, dopaol glucoside, hydroxytyrosol, caffeic acid and 3-HPP. Besides, plantamajoside could affect SCFA and tryptophan metabolism by gut microbiota. Especially, the exogenous metabolites hydroxytyrosol, caffeic acid and endogenous metabolites IPA may have potential association with the antitumor activity of plantamajoside.


Assuntos
Microbioma Gastrointestinal , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Glucosídeos/farmacologia , Interações Medicamentosas
12.
J Ethnopharmacol ; 313: 116555, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100263

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY: The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS: XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS: The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS: The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ratos , Animais , Medicina Tradicional Chinesa , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo
13.
Theranostics ; 12(18): 7775-7787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451858

RESUMO

Rationale: The efficacy and mechanism of hydroxyurea in the treatment of atherosclerosis have rarely been reported. The goal of this study was to investigate the efficacy of hydroxyurea in high-fat diet-fed ApoE-/- mice against atherosclerosis and examine the possible mechanism underlying treatment outcomes. Methods: ApoE-/- mice were fed a high-fat diet for 1 month and then administered hydroxyurea by gavage continuously for 2 months. Aortic root hematoxylin-eosin (H&E) staining and oil red O staining were used to verify the efficacy of hydroxyurea; biochemical methods and ELISA were used to detect changes in relevant metabolites in serum. 16S rRNA was used to detect composition changes in the intestinal bacterial community of animals after treatment with hydroxyurea. Metabolomics methods were used to identify fecal metabolites and their changes. Immunohistochemical staining and ELISA were used for the localization and quantification of intestinal NPC1L1. Results: We showed that aortic root HE staining and oil red O staining determined the therapeutic efficacy of hydroxyurea in the treatment of atherosclerosis in high-fat diet-fed ApoE-/- mice. Serological tests verified the ability of hydroxyurea to lower total serum cholesterol and LDL cholesterol. The gut microbiota was significantly altered after HU treatment and was significantly different from that after antiplatelet and statin therapy. Meanwhile, a metabolomic study revealed that metabolites, including stearic acid, palmitic acid and cholesterol, were significantly enriched in mouse feces. Further histological and ELISAs verified that the protein responsible for intestinal absorption of cholesterol in mice, NPC1L1, was significantly reduced after hydroxyurea treatment. Conclusions: In high-fat diet-fed ApoE-/- mice, hydroxyurea effectively treated atherosclerosis, lowered serum cholesterol, modulated the gut microbiota at multiple levels and affected cholesterol absorption by reducing NPC1L1 in small intestinal epithelial cells.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Camundongos , Animais , Hidroxiureia , Proteína C1 de Niemann-Pick , RNA Ribossômico 16S/genética , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico
14.
Chem Commun (Camb) ; 56(38): 5174-5177, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32267259

RESUMO

Boron-doped carbon nanodot materials, comprising evenly distributed BC3-nanodots in a layered carbon matrix, are prepared through a pre-assembly assisted carbonization synthetic strategy. The prepared materials are endowed with high electron affinity and distortion resistance, which provides a stable framework while generating affinity to substrates.

15.
IUBMB Life ; 72(5): 931-941, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31909882

RESUMO

The aim of this study was to investigate the protective effect of curcumin (Cu) on myocardial injury in diabetic cardiomyopathy in vivo and in vitro. Serum and myocardial glucose, inflammatory cytokines, and cardiac function indexes of type 2 diabetes db/db mice were measured. The mechanism of action was confirmed by immunohistochemistry, immunofluorescence, and western blot experiments. H9C2 cells stimulated by glucose (Glu) were used as cell models in vitro. Cu treatment improved glucose tolerance and lipid profile and reduced the production of inflammatory cytokines. In addition, Cu decreased the serum biochemical indexes. Cu inhibits high mobility group box 1 (HMGB1) signaling pathway in db/db mice. Cu treatment also significantly inhibited pa-induced inflammatory signaling pathway in H9C2 cells. HMGB1 inhibitor or HMGB1 knockdown counteracted the effects of Cu on diabetic cardiomyopathy. The present study showed the protective effects of Cu on myocardial injury via HMGB1 pathway in diabetic cardiomyopathy in vivo and in vitro.


Assuntos
Cardiotônicos/farmacologia , Curcumina/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Proteína HMGB1/genética , Hipoglicemiantes/farmacologia , Animais , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Eletrocardiografia , Regulação da Expressão Gênica , Glucose/efeitos adversos , Glucose/metabolismo , Teste de Tolerância a Glucose , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
16.
J Cell Mol Med ; 24(2): 1658-1669, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821687

RESUMO

Excessive neutrophil extracellular trap (NET) formation may contribute to polymyositis (PM)-associated interstitial lung diseases (ILD), but the underlying mechanism is not fully revealed. In this study, we found that NET accelerated the progression of ILD and promoted pulmonary fibrosis (PF) in vivo. miR-7 expression was down-regulated in lung tissue of PM group than control group, and NETs further decreased miR-7 expression. TLR9 and Smad2 were up-regulated in lung tissue of PM group than control group, and NETs further increased TLR9 and Smad2 expressions. In vitro experiments showed that PMA-treated NETs accelerated the proliferation of LF and their differentiation into myofibroblast (MF), whereas DNase I decreased the promotion effect of NETs. Neutrophil extracellular trap components myeloperoxidase (MPO) and histone 3 also promoted the proliferation and differentiation of LF. In addition, we demonstrated that TLR9 involved in the regulation of NETs on LF proliferation and differentiation, and confirmed the interaction between miR-7 and Smad2 in LF. Finally, miR-7-Smad2 pathway was confirmed to be involved in the regulation of TLR9 on LF proliferation and differentiation. Therefore, NETs promote PM-related ILD, and TLR9-miR-7-Smad2 signalling pathway is involved in the proliferation of LFs and their differentiation into MFs.


Assuntos
Armadilhas Extracelulares/metabolismo , Fibroblastos/metabolismo , Pulmão/patologia , MicroRNAs/metabolismo , Polimiosite/patologia , Transdução de Sinais , Proteína Smad2/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Progressão da Doença , Feminino , Histonas/metabolismo , Humanos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Miofibroblastos/patologia , Peroxidase/metabolismo , Ratos Sprague-Dawley
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 33(8): 1118-1122, 2017 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-28871954

RESUMO

Objective To detect the serum levels of IL-25 and IL-17 in rheumatoid arthritis (RA) patients and investigate the potential relationship with bone erosion and concomitant interstitial lung disease (ILD). Methods The study enrolled a total of 117 RA patients and 56 healthy subjects as controls. The serum levels of IL-25 and IL-17 were determined by ELISA, and rheumatoid factor (RF) was detected by turbidimetric immunoassay, anticyclic citrullinated peptide (anti-CCP) antibody as well as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were also tested. ILD was identified on high-resolution computed tomography (HR-CT), the degree of bone erosion was inspected by musculoskeletal ultrasonography, and radiographic grade was graded by Sharp-van der Heijde Score (SHS). Disease activity in RA was scored with the DAS28 and visual analogue scale (VAS). Correlation analysis was used to evaluate the correlations of IL-25 and IL-17 in different groups. Results Compared with healthy control group, the serum levels of IL-25 and IL-17 increased significantly in the patients with RA. Compared with bone erosion negative group, the serum level of IL-25 was higher significantly in bone erosion group. The level of IL-25 was higher in the ILD group of RA patients than the non-ILD group. In addition, there were positive correlations between the serum level of IL-25 and RF-IgG (r=0.285), RF-IgA (r=0.314), RF-IgM (r=0.380). Meanwhile, the serum level of IL-17 had the positive correlations with RF-IgG (r=0.198) and RF-IgM (r=0.273). Both of them had no correlations with anti-CCP antibody. Conclusion The serum level of IL-25 is raised in RA patients with bone erosion and ILD.


Assuntos
Artrite Reumatoide/imunologia , Doenças Ósseas/imunologia , Interleucina-17/sangue , Doenças Pulmonares Intersticiais/imunologia , Adulto , Idoso , Anticorpos Antiproteína Citrulinada/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fator Reumatoide/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...