RESUMO
AIMS: This study aimed to investigate the anti-inflammatory and odontoblastic effects of cerium-containing mesoporous bioactive glass nanoparticles (Ce-MBGNs) on dental pulp cells as novel pulp-capping agents. METHODOLOGY: Ce-MBGNs were synthesized using a post-impregnation strategy based on the antioxidant properties of Ce ions and proposed the first use of Ce-MBGNs for pulp-capping application. The biocompatibility of Ce-MBGNs was analysed using the CCK-8 assay and apoptosis detection. Additionally, the reactive oxygen species (ROS) scavenging ability of Ce-MBGNs was measured using the 2,7-Dichlorofuorescin Diacetate (DCFH-DA) probe. The anti-inflammatory effect of Ce-MBGNs on THP-1 cells was further investigated using flow cytometry and quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the effect of Ce-MBGNs on the odontoblastic differentiation of the dental pulp cells (DPCs) was assessed by combined scratch assays, RT-qPCR, western blotting, immunocytochemistry, Alizarin Red S staining and tissue-nonspecific alkaline phosphatase staining. Analytically, the secretions of tumour necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS: Ce-MBGNs were confirmed to effectively scavenge ROS in THP-1-derived macrophages and DPCs. Flow cytometry and RT-qPCR assays revealed that Ce-MBGNs significantly inhibited the M1 polarization of macrophages (Mφ). Furthermore, the protein levels of TNF-α and IL-1ß were downregulated in THP-1-derived macrophages after stimulation with Ce-MBGNs. With a step-forward virtue of promoting the odontoblastic differentiation of DPCs, we further confirmed that Ce-MBGNs could regulate the formation of a conductive immune microenvironment with respect to tissue repair in DPCs, which was mediated by macrophages. CONCLUSIONS: Ce-MBGNs protected cells from self-produced oxidative damage and exhibited excellent immunomodulatory and odontoblastic differentiation effects on DPCs. As a pulp-capping agent, this novel biomaterial can exert anti-inflammatory effects and promote restorative dentine regeneration in clinical treatment. We believe that this study will stimulate further correlative research on the development of advanced pulp-capping agents.
Assuntos
Anti-Inflamatórios , Cério , Polpa Dentária , Nanopartículas , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Cério/farmacologia , Humanos , Anti-Inflamatórios/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cerâmica/farmacologia , Diferenciação Celular/efeitos dos fármacos , Vidro , Odontoblastos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Células THP-1 , Agentes de Capeamento da Polpa Dentária e Pulpectomia/farmacologia , Interleucina-1beta/metabolismo , Apoptose/efeitos dos fármacos , Porosidade , Células CultivadasRESUMO
Regulatory T (Treg) cells are critical for immune tolerance but also form a barrier to antitumor immunity. As therapeutic strategies involving Treg cell depletion are limited by concurrent autoimmune disorders, identification of intratumoral Treg cell-specific regulatory mechanisms is needed for selective targeting. Epigenetic modulators can be targeted with small compounds, but intratumoral Treg cell-specific epigenetic regulators have been unexplored. Here, we show that JMJD1C, a histone demethylase upregulated by cytokines in the tumor microenvironment, is essential for tumor Treg cell fitness but dispensable for systemic immune homeostasis. JMJD1C deletion enhanced AKT signals in a manner dependent on histone H3 lysine 9 dimethylation (H3K9me2) demethylase and STAT3 signals independently of H3K9me2 demethylase, leading to robust interferon-γ production and tumor Treg cell fragility. We have also developed an oral JMJD1C inhibitor that suppresses tumor growth by targeting intratumoral Treg cells. Overall, this study identifies JMJD1C as an epigenetic hub that can integrate signals to establish tumor Treg cell fitness, and we present a specific JMJD1C inhibitor that can target tumor Treg cells without affecting systemic immune homeostasis.
Assuntos
Doenças Autoimunes , Humanos , Citocinas , Epigenômica , Histona Desmetilases , Homeostase , Oxirredutases N-Desmetilantes , Histona Desmetilases com o Domínio Jumonji/genéticaRESUMO
Clinical solutions of bone defects caused by periodontitis involve surgical treatment and subsequent anti-infection treatment using antibiotics. Such a strategy faces a key challenge in that the excessive host immune response results in the damage of periodontal tissues. Consequently, it is of great importance to develop novel periodontitis treatment that allows the regulation of the host immune response and promotes the generation of periodontal tissues. Irisin has a good bone regeneration ability and could reduce the inflammatory reaction by regulating the differentiation of macrophages. In this study, we loaded irisin onto bioactive glass nanoparticles (BGNs) to prepare a composite, irisin-BGNs (IR-BGNs) with anti-inflammatory, bacteriostatic, and tissue regeneration functions, providing a novel idea for the design of ideal materials for repairing oral tissue defects caused by periodontitis. We also verified that the IR-BGNs had better anti-inflammatory properties on RAW264.7 cells compared to irisin and BGNs alone. Strikingly, when hPDLCs were stimulated with IR-BGNs, they exhibited increased expression of markers linked to osteogenesis, ALP activity, and mineralization ability in comparison to the negative control. Furthermore, on the basis of RNA sequencing results, we validated that the p38 pathway can contribute to the osteogenic differentiation of the IR-BGNs. This work may offer new thoughts on the design of ideal materials for repairing oral tissue defects.
RESUMO
Germinal centers (GCs), which are the site of antibody diversification and affinity maturation, are vitally important for humoral immunity. GC B cell proliferation is essentially for these processes by providing enough templates for somatic hypermutation (SHM) and serving as a critical mechanism of positive selection. In the current study, we found a significant reduction of GC response in the spleens of GC B cell specific PHF14 knockout (PHF14GCB KO) mice compared with the wild-type control (PHF14GCB WT) when the mice were challenged with SRBCs or lymphocytic choriomeningitis virus. We also demonstrated that PHF14 did not affect the cell survival of GC B cells, but regulated the proliferation of GC B cells. In addition, PHF14 suppressed the expression of Cdkn1a (p21) though regulating the level of H3K4me3 to control the proliferation of GC B cells. Collectively, our data suggest that PHF14 plays an important role in the process of germinal center formation by regulating GC B cell proliferation in spleen.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Imunidade Humoral/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/imunologia , Fatores de Transcrição/genéticaRESUMO
Follicular helper T (Tfh) cells provide essential help for humoral immune response. Transcriptional factor Bcl6 is the master regulator for Tfh generation and is induced very early after T cell activation in a CD28-dependent manner, but how CD28 signal promotes Bcl6 early expression remains unknown. Here we found that CD28 signal quickly induces expression of the H3K36me2 methytransferase Nsd2, which is required for Bcl6 expression as early as the first cell division after T cell activation. Nsd2 deficiency in T cells leads to decreased Bcl6 expression, impaired Tfh generation, compromised germinal center response, and delayed virus clearance. Ectopic Bcl6 expression rescues the Tfh defect of Nsd2 KO cells. ICOS signal is dispensable for early Nsd2 induction but required for sustained Nsd2 expression, which is critical for Tfh maintenance. Overexpression of Nsd2 increases Bcl6 expression and enhances Tfh generation; 4-mo-old mice even develop spontaneous Tfh. Overall, our study reveals Nsd2 as a critical epigenetic regulator for Tfh differentiation.
Assuntos
Diferenciação Celular/fisiologia , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Centro Germinativo/metabolismo , Hematopoese/fisiologia , Ativação Linfocitária/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Transdução de Sinais/fisiologiaRESUMO
The apoptosis of glomerular mesangial cells (GMCs) in the early phase of rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis (MsPGN), is primarily triggered by sublytic C5b-9. However, the mechanism of GMC apoptosis induced by sublytic C5b-9 remains unclear. In this study, we demonstrate that expressions of TNFR1-associated death domain-containing protein (TRADD) and IFN regulatory factor-1 (IRF-1) were simultaneously upregulated in the renal tissue of Thy-1N rats (in vivo) and in GMCs under sublytic C5b-9 stimulation (in vitro). In vitro, TRADD was confirmed to be a downstream gene of IRF-1, because IRF-1 could bind to TRADD gene promoter to promote its transcription, leading to caspase 8 activation and GMC apoptosis. Increased phosphorylation of p38 MAPK was verified to contribute to IRF-1 and TRADD production and caspase 8 activation, as well as to GMC apoptosis induced by sublytic C5b-9. Furthermore, phosphorylation of MEK kinase 2 (MEKK2) mediated p38 MAPK activation. More importantly, three sites (Ser153/164/239) of MEKK2 phosphorylation were identified and demonstrated to be necessary for p38 MAPK activation. In addition, silencing of renal MEKK2, IRF-1, and TRADD genes or inhibition of p38 MAPK activation in vivo had obvious inhibitory effects on GMC apoptosis, secondary proliferation, and urinary protein secretion in rats with Thy-1N. Collectively, these findings indicate that the cascade axis of MEKK2-p38 MAPK-IRF-1-TRADD-caspase 8 may play an important role in GMC apoptosis following exposure to sublytic C5b-9 in rat Thy-1N.
Assuntos
Apoptose/efeitos dos fármacos , Caspase 8/fisiologia , Complexo de Ataque à Membrana do Sistema Complemento/farmacologia , Glomerulonefrite Membranoproliferativa/etiologia , Fator Regulador 1 de Interferon/fisiologia , MAP Quinase Quinase Quinase 2/fisiologia , Células Mesangiais/efeitos dos fármacos , Proteína de Domínio de Morte Associada a Receptor de TNF/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Glomerulonefrite Membranoproliferativa/patologia , Masculino , Células Mesangiais/patologia , Fosforilação , Ratos , Ratos Sprague-DawleyRESUMO
As a new complication, new-onset ventricular arrhythmias (VAs) post atrial fibrillation (AF) ablation have not been well defined. This prospective study aimed to describe the details of new-onset VAs post AF ablation in a large study cohort.One thousand fifty-three consecutive patients who underwent the first radiofrequency catheter ablation for AF were enrolled. All patients had no evidence of pre-ablation VAs. New-onset VAs were defined as new-onset ventricular tachycardia (VT) or premature ventricular contractions (PVC) ≥1000/24âh within 1 month post ablation.There were 46 patients (4.4%) who had 62 different new-onset VAs, among whom 42 were PVC alone, and 4 were PVC coexisting with nonsustained VT. Multivariate analysis showed that increased serum leukocyte counts ≥50% post ablation were independently associated with new-onset VAs (OR: 1.9; 95% CI: 1.0-3.5; P = 0.043). The median number of PVC was 3161 (1001-27,407) times/24âh. Outflow tract VAs were recorded in 35 (76.1%) patients. No significant differences were found in origin of VAs (P = 0.187). VAs disappeared without any treatment in 6 patients (13.0%). No VAs-related adverse cardiac event occurred.The study revealed a noticeable prevalence but relatively benign prognosis of new-onset VAs post AF ablation. Increased serum leukocyte counts ≥50% post ablation appeared to be associated with new-onset VAs, implying that inflammatory response caused by ablation might be the mechanism.
Assuntos
Arritmias Cardíacas/epidemiologia , Ablação por Cateter , Complicações Pós-Operatórias/epidemiologia , Adulto , Idoso , Fibrilação Atrial/cirurgia , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos ProspectivosRESUMO
Inflammatory response has been reported to contribute to the renal lesions in rat Thy-1 nephritis (Thy-1N) as an animal model of human mesangioproliferative glomerulonephritis (MsPGN). Besides C5b-9 complex, C5a is also a potent pro-inflammatory mediator and correlated to severity of various nephritic diseases. However, the role of C5a in mediating pro-inflammatory cytokine production in rats with Thy-1N is poorly defined. In the present studies, the levels of C5a, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were first determined in the renal tissues of rats with Thy-1N. Then, the expression of IL-6 and TNF-α was detected in rat glomerular mesangial cells (GMC) stimulated with our recombinant rat C5a in vitro. Subsequently, the activation of mitogen-activated protein kinase (MAPK) signaling pathways (p38 MAPK, ERK1/2 and JNK) and their roles in the regulation of IL-6 and TNF-α production were examined in the GMC induced by C5a. The results showed that the levels of C5a, IL-6 and TNF-α were markedly increased in the renal tissues of Thy-1N rats. Rat C5a stimulation in vitro could up-regulate the expression of IL-6 and TNF-α in rat GMC, and the activation of MAPK signaling pathways was involved in the induction of IL-6 and TNF-α. Mechanically, p38 MAPK activation promoted IL-6 production, while either ERK1/2 or JNK activation promoted TNF-α production in the GMC with exposure to C5a. Taken together, these data implicate that C5a induces the synthesis of IL-6 and TNF-α in rat GMC through the activation of MAPK signaling pathways.
Assuntos
Complemento C5a/fisiologia , Mesângio Glomerular/metabolismo , Interleucina-6/biossíntese , Sistema de Sinalização das MAP Quinases , Fator de Necrose Tumoral alfa/biossíntese , Animais , Fosforilação , Ratos , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismoRESUMO
The apoptosis of glomerular mesangial cells (GMCs) is considered to be an important contributor to the initiation and development of rat Thy-1 nephritis (Thy-1N) and is accompanied by sublytic C5b-9 deposition. However, the mechanism by which sublytic C5b-9 triggers GMC apoptosis has not been elucidated. In this study, functional and histological examinations were performed on GMCs treated with sublytic C5b-9 (in vitro) and renal tissues of Thy-1N rats (in vivo). The in vitro studies found that sublytic C5b-9 could trigger GMC apoptosis through upregulating Egr-1, ATF3, and Gadd45 expression. Egr-1-mediated post-transcriptional modulation of ATF3, Egr-1/ATF3-enhanced Gadd45 promoter activity, and p300-mediated ATF3 acetylation were all involved in GMC apoptosis. More importantly, the effective binding elements for Egr-1 and ATF3 to Gadd45ß/γ promoters and the ATF3 acetylation site were identified. In vivo, silencing renal p300, Egr-1, ATF3, and Gadd45ß/γ significantly decreased GMC apoptosis, secondary GMC proliferation, and urinary protein secretion in Thy-1N rats. Together, these findings implicate that sublytic C5b-9-induced activation of Egr-1/p300-ATF3/Gadd45 axis plays a critical role in GMC apoptosis in Thy-1N rats.
Assuntos
Fator 3 Ativador da Transcrição/genética , Apoptose , Proteínas de Ciclo Celular/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteína p300 Associada a E1A/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células Mesangiais/patologia , Nefrite/metabolismo , Proteínas Nucleares/metabolismo , Acetilação , Fator 3 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Inativação Gênica , Lisina/metabolismo , Masculino , Células Mesangiais/metabolismo , Nefrite/complicações , Proteinúria/complicações , Proteinúria/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Antígenos Thy-1 , Transcrição Gênica , Regulação para CimaRESUMO
BACKGROUND: Whether patients with asymptomatic atrial fibrillation (AF) could benefit from radiofrequency catheter ablation (RFCA) remains unclear. This study aimed to compare the outcomes of RFCA between asymptomatic and symptomatic AF. METHODS: Sixty-six patients with asymptomatic persistent AF who underwent the primary ablation for AF were enrolled; 132 patients with symptomatic persistent AF were matched using propensity score matching. All patients underwent circumferential pulmonary vein isolation in combination with linear ablation using AF termination as the primary procedural endpoint. RESULTS: Sinus rhythm (SR) was restored by ablation in 18 (27.3%) patients in the asymptomatic group and 93 (70.5%) in the symptomatic group (P < 0.001). Combined with intravenous infusion of ibutilide (1 mg), the numbers were 45 (68.2%) and 116 (87.8%), respectively (P = 0.001). At 1-year follow-up, SR was present in 23 (34.8%) patients in the asymptomatic group and 78 (59.1%) in the symptomatic group without any antiarrhythmic medication after a single procedure (P = 0.001). Of the 43 patients experiencing recurrence in the asymptomatic group, 16 (37.2%) had recurrent atrial tachycardia (AT)-related symptoms. Multivariate analysis showed that asymptomatic AF was independently associated with AF failed to be terminated by ablation (OR: 7.1; 95% CI: 3.4 to 14.9; P < 0.001) and recurrence (OR: 2.2; 95% CI: 1.1 to 4.4; P = 0.018). Patients with asymptomatic AF showed less improvement in quality of life postablation than those with symptoms. CONCLUSION: Current catheter ablation techniques showed worse outcomes in asymptomatic AF patients than in those with symptoms. Recurrent AT could cause significant symptoms in previously asymptomatic patients.
Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter , Veias Pulmonares/cirurgia , Doenças Assintomáticas , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Ablação por Cateter/efeitos adversos , Distribuição de Qui-Quadrado , Feminino , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Pontuação de Propensão , Veias Pulmonares/fisiopatologia , Qualidade de Vida , Recuperação de Função Fisiológica , Recidiva , Fatores de Risco , Fatores de Tempo , Resultado do TratamentoRESUMO
Interleukin 17 (IL-17), produced mainly by T helper 17 (Th17) cells, is increasingly recognized as a key regulator in various autoimmune diseases, including human multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although several microRNAs (miRNAs) with aberrant expression have been shown to contribute to the pathogenesis of MS and EAE, the mechanisms underlying the regulation of abnormal miRNA expression in astrocytes upon IL-17 stimulation remain unclear. In the present study, we detected the changes of miRNA expression profiles both in the brain tissue of EAE mice and in cultured mouse primary astrocytes stimulated with IL-17 and identified miR-873 as one of the co-up-regulated miRNAs in vivo and in vitro. The overexpression of miR-873, demonstrated by targeting A20 (TNFα-induced protein 3, TNFAIP3), remarkably reduced the A20 level and promoted NF-κB activation in vivo and in vitro as well as increasing the production of inflammatory cytokines and chemokines (i.e. IL-6, TNF-α, MIP-2, and MCP-1/5). More importantly, silencing the endogenous miR-873 or A20 gene with lentiviral vector of miR-873 sponge (LV-miR-873 sponge) or short hairpin RNA (shRNA) of A20 (LV-A20 shRNA) in vivo significantly lessened or aggravated inflammation and demyelination in the central nervous system (CNS) of EAE mice, respectively. Taken together, these findings indicate that miR-873 induced by IL-17 stimulation promotes the production of inflammatory cytokines and aggravates the pathological process of EAE mice through the A20/NF-κB pathway, which provides a new insight into the mechanism of inflammatory damage in MS.
Assuntos
Cisteína Endopeptidases/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Interleucina-17/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Doenças Desmielinizantes , Regulação da Expressão Gênica , Inflamação , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfaRESUMO
CCAAT/enhancer-binding protein (C/EBPß)-enhanced IL-6 and TGF-ß1 promoter activity and p300-mediated C/EBPß acetylation were involved in up-regulation of IL-6 and TGF-ß1 expression in GMCs attacked by sublytic C5b-9. In detail, the elements of C/EBPß binding to rat IL-6 and TGF-ß1 promoter and 3 acetylated sites of rat C/EBPß protein were first revealed. Furthermore, silencing the p300 or C/EBPß gene in rat kidney significantly reduced the production of IL-6 and TGF-ß1 and renal lesions in Thy-1N rats. Together, these data indicate that the mechanism of IL-6 and TGF-ß1 production in renal tissue of Thy-1N rats is associated with sublytic C5b-9 up-regulated p300 and p300-mediated C/EBPß acetylation as well as C/EBPß-activated IL-6 and TGF-ß1 genes.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/fisiologia , Mesângio Glomerular/metabolismo , Interleucina-6/biossíntese , Nefrite/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA , Mesângio Glomerular/citologia , Interleucina-17/biossíntese , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Mycobacterium tuberculosis 6-kDa early secretory antigenic target (ESAT-6) is a dominant target antigen for cell-mediated immunity in the early phase of tuberculosis. The fms-like tyrosine kinase 3 ligand (FL) that induces potent immune response has been used as an adjuvant in vaccine development. In this study, a new recombinant plasmid (pIRES-epitope-peptides-FL) encoding three T cell epitopes of ESAT-6 and FL was constructed, and the immunogenicity of the DNA vaccine was assessed in C57BL/6 mice immunized with the plasmid DNA vaccine. Additionally, a strategy of intramuscular injection with the DNA vaccine (prime) and intranasal administration of the epitope peptides (boost) was employed to induce higher immune reaction of the mice. The results showed that mice vaccinated with the recombinant plasmid DNA vaccine and boosted with the peptides not only increased the levels of Th1 cytokines (IFN-γ and IL-12), the number of IFN-γ(+) T cells and activities of cytotoxic T lymphocytes as well as IgG, but also enhanced protection against Mycobacterium tuberculosis challenge. In conclusion, these data indicate that the novel recombinant pIRES-epitope-peptides-FL plasmid is a useful DNA vaccine for preventing Mycobacterium tuberculosis infection.
RESUMO
Highly pathogenic avian influenza H5N1 epidemics are a significant public health hazard. Genetically engineered H5N1 viruses with mammalian transmission activity highlight the potential risk of a human influenza H5N1 pandemic. Understanding the underlying principles of the innate immune system in response to influenza H5N1 viruses will lead to improved prevention and control of these potentially deadly viruses. γδ T cells act as the first line of defense against microbial infection and help initiate adaptive immune responses during the early stages of viral infection. In this study, we investigated the molecular mechanisms of γδ T cells in response to influenza H5N1 viral infection. We found that recombinant hemagglutinin (rHA) derived from three different strains of influenza H5N1 viruses elicited the activation of γδ T cells cultured in peripheral blood mononuclear cells (PBMCs). Both the cell surface expression of CD69, an early activation marker on γδ T cells, and the production of interferon-γ (IFN-γ) were significantly increased. Notably, the rHA protein-induced γδ T-cell activation was not mediated by TCRγδ, NKG2D or pattern recognition receptors (PRRs) or NKp46 receptors. The interaction of rHA proteins with sialic acid receptors may play a critical role in γδ T-cell activation. Our data may provide insight into the mechanisms underlying γδ T-cell activation in response to infection with H5N1 viruses.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Superfície Celular/metabolismo , Linfócitos T/imunologia , Adulto , Biomarcadores/metabolismo , Humanos , Interferon gama/biossíntese , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ligação Proteica , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas Recombinantes/metabolismoRESUMO
The 2009 H1N1 influenza pandemic demonstrated the significance of a global health threat to human beings. Although pandemic H1N1 vaccines have been rapidly developed, passive serotherapy may offer superior immediate protection against infections in children, the elderly and immune-compromised patients during an influenza pandemic. Here, we applied a novel strategy based on Epstein-Barr virus (EBV)-immortalized peripheral blood memory B cells to screen high viral neutralizing monoclonal antibodies (MAbs) from individuals vaccinated with the 2009 pandemic H1N1 vaccine PANFLU.1. Through a massive screen of 13 090 immortalized memory B-cell clones from three selected vaccinees, seven MAbs were identified with both high viral neutralizing capacities and hemagglutination inhibition (HAI) activities against the 2009 pandemic H1N1 viruses. These MAbs may have important clinical implications for passive serotherapy treatments of infected patients with severe respiratory syndrome, especially children, the elderly and immunodeficient individuals. Our successful strategy for generating high-affinity MAbs from EBV-immortalized peripheral blood memory B cells may also be applicable to other infectious or autoimmune diseases.
Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Linfócitos B/metabolismo , Influenza Humana/prevenção & controle , Pandemias , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/sangue , Anticorpos Antivirais/isolamento & purificação , Linfócitos B/imunologia , Linfócitos B/virologia , China/epidemiologia , Testes de Inibição da Hemaglutinação , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Memória Imunológica , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/sangue , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Testes de Neutralização , VacinaçãoRESUMO
Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.