Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(7): 392, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874768

RESUMO

A self-powered photoelectrochemical (PEC) aptamer sensor based on ZnIn2S4 as the photoanode and Cu2O@Ag@Ag3PO4 as the sensing cathode is designed for the detection of Hg2+. An indium tin oxide (ITO) electrode modified with ZnIn2S4 was used instead of a platinum (Pt) counter electrode to provide an obviously stable photocurrent signal. The suitable band gap width of ZnIn2S4 can generate photogenerated electrons well. The unique hydrangea structure of ZnIn2S4 can enhance light absorption and accelerate the separation and transfer of photocarriers. At the same time, Cu2O@Ag@Ag3PO4 with excellent electrical conductivity further enhances the photocurrent provided by the ZnIn2S4 photoanode. Because the reducing substances in the biological medium can change the photoanode characteristics of the photoanode interface, the separation of the photoanode and the sensing bicathode is beneficial to improve the anti-interference ability of the sensor. Under optimized conditions, the PEC aptamer sensor realizes the detection of Hg2+ (1 mM-1 fM), and the detection limit is 0.4 fM. In addition, the constructed self-powered PEC sensor has good selectivity, repeatability, and stability, which provides a new idea for the design of the PEC aptamer sensor platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...