Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Nat Prod ; 87(6): 1563-1573, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38856635

RESUMO

Ten new ergone derivatives (1-10) and five known analogues (11-15) were isolated from the deep-sea-derived fungus Aspergillus terreus YPGA10. The structures including the absolute configurations were established by detailed analysis of the NMR spectroscopic data, HRESIMS, ECD calculation, and coupling constant calculation. All the structures are characterized by a highly conjugated 25-hydroxyergosta-4,6,8(14),22-tetraen-3-one nucleus. Structurally, compound 2 bearing a 15-carbonyl group and compounds 5-7 possessing a 15ß-OH/OCH3 group are rarely encountered in ergone derivatives. Bioassay results showed that compounds 1 and 11 demonstrated cytotoxic effects on human colon cancer SW620 cells with IC50 values of 8.4 and 3.1 µM, respectively. Notably, both compounds exhibited negligible cytotoxicity on the human normal lung epithelial cell BEAS-2B. Compound 11 was selected for preliminary mechanistic study and was found to inhibit cell proliferation and induce apoptosis in human colon cancer SW620 cells. In addition, compound 1 displayed cytotoxic activity against five human leukemia cell lines with IC50 values ranging from 5.7 to 8.9 µM. Our study demonstrated that compound 11 may serve as a potential candidate for the development of anticolorectal cancer agents.


Assuntos
Apoptose , Aspergillus , Neoplasias do Colo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Aspergillus/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
2.
J Nat Prod ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943602

RESUMO

Four new p-terphenyl derivatives, talaroterphenyls A-D (1-4), together with three biosynthetically related known ones (5-7), were obtained from the mangrove sediment-derived Talaromyces sp. SCSIO 41412. Compounds 1-3 are rare p-terphenyls, which are completely substituted on the central benzene ring by oxygen atoms; this is the first report of their isolation from natural sources. Their structures were elucidated through NMR spectroscopy, HRESIMS, and X-ray diffraction. Genome sequence analysis revealed that 1-7 were biosynthesized from tyrosine and phenylalanine, involving four key biosynthetic genes (ttpB-ttpE). These p-terphenyls (1-7) and 36 marine-derived terphenyl analogues (8-43) were screened for phosphodiesterase 4 (PDE4) inhibitory activities, and 1-5, 14, 17, 23, and 26 showed notable activities with IC50 values of 0.40-16 µM. The binding pattern of p-terphenyl inhibitors 1-3 with PDE4 were explored by molecular docking analysis. Talaroterphenyl A (1), with a low cytotoxicity, showed obvious anti-inflammatory activity in LPS-stimulated RAW264.7 cells. Furthermore, in the TGF-ß1-induced medical research council cell strain-5 (MRC-5) pulmonary fibrosis model, 1 could down-regulate the expression levels of FN1, COL1, and α-SMA significantly at concentrations of 5-20 µM. This study suggests that the oxidized p-terphenyl 1, as a marine-derived PDE4 inhibitor, could be used as a promising antifibrotic agent.

3.
Bioorg Chem ; 149: 107474, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805909

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high mortality lung disease. Although the antifibrotic drugs pirfenidone and nintedanib could slow the rate of lung function decline, the usual course of the condition is inexorably to respiratory failure and death. Therefore, new approaches and novel therapeutic drugs for the treatment of IPF are urgently needed. And the selective PDE4 inhibitor has in vivo and in vitro anti-fibrotic effects in IPF models. But the clinical application of most PDE4 inhibitors are limited by their unexpected and severe side effects such as nausea, vomiting, and diarrhea. Herein, structure-based optimizations of the natural product Moracin M resulted in a novel a novel series of 2-arylbenzofurans as potent PDE4 inhibitors. The most potent inhibitor L13 has an IC50 of 36 ± 7 nM with remarkable selectivity across the PDE families and administration of L13·citrate (10.0 mg/kg) exhibited comparable anti-pulmonary fibrosis effects to pirfenidone (300 mg/kg) in a bleomycin-induced IPF mice model, indicate that L13 is a potential lead for the treatment of IPF.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Fibrose Pulmonar Idiopática , Inibidores da Fosfodiesterase 4 , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/uso terapêutico , Animais , Relação Estrutura-Atividade , Camundongos , Estrutura Molecular , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Bleomicina , Relação Dose-Resposta a Droga , Camundongos Endogâmicos C57BL , Masculino , Benzofuranos/farmacologia , Benzofuranos/química , Benzofuranos/síntese química
4.
Cell Rep ; 43(5): 114223, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748879

RESUMO

Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.


Assuntos
Proteínas de Bactérias , Burkholderia cenocepacia , Coenzima A Ligases , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Percepção de Quorum , Percepção de Quorum/genética , Burkholderia cenocepacia/patogenicidade , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Virulência , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Animais , Transdução de Sinais , Ácidos Graxos Monoinsaturados/metabolismo , Camundongos , Ligação Proteica , Ácidos Láuricos/metabolismo
5.
J Med Chem ; 67(10): 8309-8322, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38669059

RESUMO

Liver fibrosis is a common pathological feature of most chronic liver diseases with no effective drugs available. Phosphodiesterase 1 (PDE1), a subfamily of the PDE super enzyme, might work as a potent target for liver fibrosis by regulating the concentration of cAMP and cGMP. However, there are few PDE1 selective inhibitors, and none has been investigated for liver fibrosis treatment yet. Herein, compound AG-205/1186117 with the dihydropyrimidine scaffold was selected as the hit by virtual screening. A hit-to-lead structural modification led to a series of dihydropyrimidine derivatives. Lead 13h exhibited the IC50 of 10 nM against PDE1, high selectivity over other PDEs, as well as good safety properties. Administration of 13h exerted significant anti-liver fibrotic effects in bile duct ligation-induced fibrosis rats, which also prevented TGF-ß-induced myofibroblast differentiation in vitro, confirming that PDE1 could work as a potential target for liver fibrosis.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Desenho de Fármacos , Cirrose Hepática , Inibidores de Fosfodiesterase , Pirimidinas , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/uso terapêutico , Humanos , Ratos , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/uso terapêutico , Inibidores de Fosfodiesterase/química , Masculino , Relação Estrutura-Atividade , Ratos Sprague-Dawley , Simulação de Acoplamento Molecular , Estrutura Molecular
6.
Medicine (Baltimore) ; 103(12): e37520, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518036

RESUMO

Oral behavior management methods include basic behavior management methods and drug behavior management methods. In many cases, dental treatment that cannot be done simply through basic behavior management is not possible. The uncooperative behavior of children with dental fear in oral treatment has increased the demand for medication based behavior management methods. Drug sedation can provide more effective analgesic and anti-anxiety effects, thereby helping to provide comfortable, efficient, and high-quality dental services. This article will review the drug sedation methods selected in clinical treatment of pediatric dental fear in recent years, as well as the safety and effectiveness of commonly used drugs, in order to provide guidance for dental professionals in clinical practice.


Assuntos
Anestesia Dentária , Anestesia , Ansiolíticos , Criança , Humanos , Ansiedade ao Tratamento Odontológico/tratamento farmacológico , Ansiedade ao Tratamento Odontológico/prevenção & controle , Terapia Comportamental , Sedação Consciente
7.
Eur J Pharmacol ; 967: 176353, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325798

RESUMO

Oral submucous fibrosis (OSF) is a chronic oral mucosal disease. The pathological changes of OSF include epithelial damage and subepithelial matrix fibrosis. This study aimed to reveal the epithelial injury mechanism of OSF. A histopathological method was used to analyze oral mucosal tissue from OSF patients and OSF rats. The expression of PDE12 in the oral epithelium was analyzed by immunohistochemistry. The epithelial-mesenchymal transition (EMT) and tight junction proteins in arecoline-treated HOKs were explored by western blotting. Epithelial leakage was assessed by transepithelial electrical resistance and lucifer yellow permeability. The expression of PDE12 and the mitochondrial morphology, mitochondrial permeability transition pore opening, mitochondrial membrane potential, and mitochondrial reactive oxygen species (mtROS) were evaluated in arecoline-induced HOKs. Oxidative phosphorylation (OXPHOS) complexes and ATP content were also explored in HOKs. The results showed significant overexpression of PDE12 in oral mucosal tissue from OSF patients and rats. PDE12 was also overexpressed and aggregated in mitochondria in arecoline-induced HOKs, resulting in dysfunction of OXPHOS and impaired mitochondrial function. An EMT, disruption of tight junctions with epithelial leakage, and extracellular matrix remodeling were also observed. PDE12 overexpression induced by PDE12 plasmid transfection enhanced the mtROS level and interfered with occludin protein localization in HOKs. Interestingly, knockdown of PDE12 clearly ameliorated arecoline-induced mitochondrial dysfunction and epithelial barrier dysfunction in HOKs. Therefore, we concluded that overexpression of PDE12 impaired mitochondrial OXPHOS and mitochondrial function and subsequently impaired epithelial barrier function, ultimately leading to OSF. We suggest that PDE12 may be a new potential target against OSF.


Assuntos
Doenças Mitocondriais , Fibrose Oral Submucosa , Animais , Humanos , Ratos , Arecolina/efeitos adversos , Arecolina/metabolismo , Mitocôndrias , Doenças Mitocondriais/metabolismo , Fibrose Oral Submucosa/induzido quimicamente , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Fosforilação Oxidativa
8.
J Chem Inf Model ; 63(24): 7755-7767, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38048439

RESUMO

The accurate prediction of the binding affinities between small molecules and biological macromolecules plays a fundamental role in structure-based drug design, which is still challenging. The free energy perturbation-based absolute binding free energy (FEP-ABFE) approach has shown potential in its reliability. To correctly calculate the energy related to the ligand being restrained by the receptor, additional restraints between the ligand and the receptor are needed. However, determining the restraint parameters for individual ligands empirically is too trivial to be automated, and usually gives rise to numerical instabilities, which set back the applications of FEP-ABFE. To address these issues, we derived the analytical expression for the probability distribution of energy differences, P(ΔU), during the process of restraint addition, which is called the RED-E (restraint energy distribution at equilibrium position) function. Simulations indicated that the RED-E function can accurately describe P(ΔU) when restraints are added at the equilibrium position. Based on the RED-E function, an automatic restraint selection method was proposed to select the best restraint. With this method, there is a high phase-space overlap between the free and restrained states, such that using a 2-λ perturbation can accurately calculate the free energy of the restraint addition, which is a nearly 6 times acceleration compared with current widely used 12-λ perturbation method. The RED-E function gives insight into the non-Gaussian behavior of the sampled P(ΔU) in certain FEP processes in an analytical way. The highly automated and accelerated restraint selection also makes it possible for the large-scale application of FEP-ABFE in real drug discovery practices.


Assuntos
Simulação de Dinâmica Molecular , Termodinâmica , Ligantes , Reprodutibilidade dos Testes , Entropia
9.
Chem Biol Interact ; 385: 110654, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666442

RESUMO

In vivo and in vitro studies have confirmed that liquiritigenin (LQ), the primary active component of licorice, acts as an antitumor agent. However, how LQ diminishes or inhibits tumor growth is not fully understood. Here, we report the enzymatic inhibition of LQ and six other flavanone analogues towards AKR1Cs (AKR1C1, AKR1C2 and AKR1C3), which are involved in prostate cancer, breast cancer, and resistance of anticancer drugs. Crystallographic studies revealed AKR1C3 inhibition of LQ is related to its complementarity with the active site and the hydrogen bonds net in the catalytic site formed through C7-OH, aided by its nonplanar and compact structure due to the saturation of the C2C3 double bond. Comparison of the LQ conformations in the structures of AKR1C1 and AKR1C3 revealed the induced-fit conformation changes, which explains the lack of isoform selectivity of LQ. Our findings will be helpful for better understanding the antitumor effects of LQ on hormonally dependent cancers and the rational design of selective AKR1Cs inhibitors.

10.
Brief Bioinform ; 24(6)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37756591

RESUMO

In the process of drug discovery, one of the key problems is how to improve the biological activity and ADMET properties starting from a specific structure, which is also called structural optimization. Based on a starting scaffold, the use of deep generative model to generate molecules with desired drug-like properties will provide a powerful tool to accelerate the structural optimization process. However, the existing generative models remain challenging in extracting molecular features efficiently in 3D space to generate drug-like 3D molecules. Moreover, most of the existing ADMET prediction models made predictions of different properties through a single model, which can result in reduced prediction accuracy on some datasets. To effectively generate molecules from a specific scaffold and provide basis for the structural optimization, the 3D-SMGE (3-Dimensional Scaffold-based Molecular Generation and Evaluation) work consisting of molecular generation and prediction of ADMET properties is presented. For the molecular generation, we proposed 3D-SMG, a novel deep generative model for the end-to-end design of 3D molecules. In the 3D-SMG model, we designed the cross-aggregated continuous-filter convolution (ca-cfconv), which is used to achieve efficient and low-cost 3D spatial feature extraction while ensuring the invariance of atomic space rotation. 3D-SMG was proved to generate valid, unique and novel molecules with high drug-likeness. Besides, the proposed data-adaptive multi-model ADMET prediction method outperformed or maintained the best evaluation metrics on 24 out of 27 ADMET benchmark datasets. 3D-SMGE is anticipated to emerge as a powerful tool for hit-to-lead structural optimizations and accelerate the drug discovery process.

11.
J Med Chem ; 66(17): 12468-12478, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37584424

RESUMO

Phosphodiesterase 1 (PDE1) is a subfamily of PDE super enzyme families that can hydrolyze cyclic adenosine monophosphate and cyclic guanosine monophosphate simultaneously. Currently, the number of PDE1 inhibitors is relatively few, significantly limiting their application. Herein, a novel series of quinolin-2(1H)-ones were designed rationally, leading to compound 10c with an IC50 of 15 nM against PDE1C, high selectivity across other PDEs, and remarkable safety properties. Furthermore, we used the lead compound 10c as a chemical tool to explore whether PDE1 could work as a novel potential target for the treatment of inflammatory bowel disease (IBD), a disease which is a chronic, relapsing disorder of the gastrointestinal tract inflammation lacking effective treatment. Our results showed that administration of 10c exerted significant anti-IBD effects in the dextran sodium sulfate-induced mice model and alleviated the inflammatory response, indicating that PDE1 could work as a potent target for IBD.


Assuntos
Doenças Inflamatórias Intestinais , Inibidores de Fosfodiesterase , Camundongos , Animais , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases , GMP Cíclico , AMP Cíclico , Doenças Inflamatórias Intestinais/tratamento farmacológico
12.
J Nat Prod ; 86(4): 830-841, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897077

RESUMO

Seven new phenolic bisabolane sesquiterpenoids (1-7), along with 10 biogenetically related analogues (8-17), were obtained from the deep-sea-derived fungus Aspergillus versicolor YPH93. The structures were elucidated based on extensive analyses of the spectroscopic data. Compounds 1-3 are the first examples of phenolic bisabolanes that contain two hydroxy groups attached to the pyran ring. The structures of sydowic acid derivatives (1-6 and 8-10) were carefully studied, leading to the structure revisions of six known analogues, including a revision of the absolute configuration for sydowic acid (10). All metabolites were evaluated for their effects on ferroptosis. Compound 7 exerted inhibition on erastin/RSL3-induced ferroptosis with EC50 values ranging from 2 to 4 µM, while it exhibited no effects on TNFα-induced necroptosis or H2O2-induced cell necrosis.


Assuntos
Ferroptose , Sesquiterpenos , Aspergillus/química , Peróxido de Hidrogênio , Estrutura Molecular , Sesquiterpenos Monocíclicos , Fenóis/farmacologia , Sesquiterpenos/química
13.
Acta Pharm Sin B ; 13(3): 1180-1191, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970192

RESUMO

Vascular dementia (VaD) is the second commonest type of dementia which lacks of efficient treatments currently. Neuroinflammation as a prominent pathological feature of VaD, is highly involved in the development of VaD. In order to verify the therapeutic potential of PDE1 inhibitors against VaD, the anti-neuroinflammation, memory and cognitive improvement were evaluated in vitro and in vivo by a potent and selective PDE1 inhibitor 4a. Also, the mechanism of 4a in ameliorating neuroinflammation and VaD was systematically explored. Furthermore, to optimize the drug-like properties of 4a, especially for metabolic stability, 15 derivatives were designed and synthesized. As a result, candidate 5f, with a potent IC50 value of 4.5 nmol/L against PDE1C, high selectivity over PDEs, and remarkable metabolic stability, efficiently ameliorated neuron degeneration, cognition and memory impairment in VaD mice model by suppressing NF-κB transcription regulation and activating cAMP/CREB axis. These results further identified PDE1 inhibition could serve as a new therapeutic strategy for treatment of VaD.

14.
Int J High Perform Comput Appl ; 37(1): 45-57, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38603271

RESUMO

As a theoretically rigorous and accurate method, FEP-ABFE (Free Energy Perturbation-Absolute Binding Free Energy) calculations showed great potential in drug discovery, but its practical application was difficult due to high computational cost. To rapidly discover antiviral drugs targeting SARS-CoV-2 Mpro and TMPRSS2, we performed FEP-ABFE-based virtual screening for ∼12,000 protein-ligand binding systems on a new generation of Tianhe supercomputer. A task management tool was specifically developed for automating the whole process involving more than 500,000 MD tasks. In further experimental validation, 50 out of 98 tested compounds showed significant inhibitory activity towards Mpro, and one representative inhibitor, dipyridamole, showed remarkable outcomes in subsequent clinical trials. This work not only demonstrates the potential of FEP-ABFE in drug discovery but also provides an excellent starting point for further development of anti-SARS-CoV-2 drugs. Besides, ∼500 TB of data generated in this work will also accelerate the further development of FEP-related methods.

15.
Front Plant Sci ; 13: 992755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36352884

RESUMO

Drought is the abiotic factor that adversely affects plant growth, development survival, and crop productivity, posing a substantial threat to sustainable agriculture worldwide, especially in warm and dry areas. However, the extent of damage depends upon the crop growth stage, severity and frequency of the stress. In general, the reproductive growth phase is more sensitive to stresses causing a substantial loss in crop productivity. Saccharum spontaneum (L.) is the most variable wild relative of sugarcane with potential for use in sugarcane crop improvement programs. In the present study addresses the transcriptomic analysis of drought stress imposed by polyethylene glycol-6000 (PED-6000; w/v- 25%) on the root tip tissues of S. spontaneum GX83-10. The analysis of microarrays of drought-stressed roots was performed at 0 (CK), 2 (T2), 4 (T4), 8 (T8) and 24 h (T24). The analyzed data were compared with the gene function annotations of four major databases, such as Nr, KOG/COG, Swiss-Prot, and KEGG, and a total of 62,988 single-gene information was obtained. The differently expressed genes of 56237 (T4), 59319 (T8), and 58583 (T24), among which CK obtained the most significant number of expressed genes (35920) as compared to T24, with a total of 53683 trend genes. Gene ontology (GO) and KEGG analysis were performed on the 6 important trends, and a total of 598 significant GO IDs and 42 significantly enriched metabolic pathways. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with enhanced stress resistance efficiency for sustainable agriculture.

16.
Acta Pharm Sin B ; 12(8): 3298-3312, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35967282

RESUMO

Morinda officinalis oligosaccharides (MOO) are an oral drug approved in China for the treatment of depression in China. However, MOO is hardly absorbed so that their anti-depressant mechanism has not been elucidated. Here, we show that oral MOO acted on tryptophan â†’ 5-hydroxytryptophan (5-HTP) â†’ serotonin (5-HT) metabolic pathway in the gut microbiota. MOO could increase tryptophan hydroxylase levels in the gut microbiota which accelerated 5-HTP production from tryptophan; meanwhile, MOO inhibited 5-hydroxytryptophan decarboxylase activity, thus reduced 5-HT generation, and accumulated 5-HTP. The raised 5-HTP from the gut microbiota was absorbed to the blood, and then passed across the blood-brain barrier to improve 5-HT levels in the brain. Additionally, pentasaccharide, as one of the main components in MOO, exerted the significant anti-depressant effect through a mechanism identical to that of MOO. This study reveals for the first time that MOO can alleviate depression via increasing 5-HTP in the gut microbiota.

17.
Eur J Med Chem ; 242: 114631, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985255

RESUMO

Inflammatory Bowel Diseases (IBDs) are chronic disorders with iterative intestinal mucosal inflammation which remain unmet medical needs. PDE4 inhibitors were reported to be novel anti-IBD agents, but their clinical use was hampered by side effects such as emesis and nausea. Herein, structure-based discovery of natural mangostanin (1) targeting the M-pocket resulted in the novel and potent PDE4 inhibitor 22d (IC50 = 3.5 nM) and favorable physico-chemical properties. X-Ray study revealed that 22d interacted tightly with the M-pocket and maintained the key interactions between PDE4 and roflumilast. Worthy to note that compounds 22d and our previously reported 4e and 18a, originating from mangostanin, all caused no emesis on beagle dogs at the oral dose of 10 mg/kg, confirming the safety superiority of scaffold in mangostanin derivatives over that in positive roflumilast. Finally, administration of 22d (5.0 mg/kg, twice-daily) exhibited comparable anti-IBD effects to the positive control dipyridamole (25.0 mg/kg, twice-daily) in the dextran sulfate sodium (DSS)-induced IBD mice model, indicating its potential as a novel anti-IBD agent.


Assuntos
Doenças Inflamatórias Intestinais , Inibidores da Fosfodiesterase 4 , Aminopiridinas , Animais , Benzamidas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Ciclopropanos , Sulfato de Dextrana , Dipiridamol/uso terapêutico , Cães , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico
18.
Acta Pharm Sin B ; 12(4): 1963-1975, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847497

RESUMO

As a member of cyclic nucleotide phosphodiesterase (PDE) enzyme family, PDE10A is in charge of the degradation of cyclic adenosine (cAMP) and guanosine monophosphates (cGMP). While PDE10A is primarily expressed in the medium spiny neurons of the striatum, it has been implicated in a variety of neurological disorders. Indeed, inhibition of PDE10A has proven to be of potential use for the treatment of central nervous system (CNS) pathologies caused by dysfunction of the basal ganglia-of which the striatum constitutes the largest component. A PDE10A-targeted positron emission tomography (PET) radioligand would enable a better assessment of the pathophysiologic role of PDE10A, as well as confirm the relationship between target occupancy and administrated dose of a given drug candidate, thus accelerating the development of effective PDE10A inhibitors. In this study, we designed and synthesized a novel 18F-aryl PDE10A PET radioligand, codenamed [18F]P10A-1910 ([18F]9), in high radiochemical yield and molar activity via spirocyclic iodonium ylide-mediated radiofluorination. [18F]9 possessed good in vitro binding affinity (IC50 = 2.1 nmol/L) and selectivity towards PDE10A. Further, [18F]9 exhibited reasonable lipophilicity (logD = 3.50) and brain permeability (P app > 10 × 10-6 cm/s in MDCK-MDR1 cells). PET imaging studies of [18F]9 revealed high striatal uptake and excellent in vivo specificity with reversible tracer kinetics. Preclinical studies in rodents revealed an improved plasma and brain stability of [18F]9 when compared to the current reference standard for PDE10A-targeted PET, [18F]MNI659. Further, dose-response experiments with a series of escalating doses of PDE10A inhibitor 1 in rhesus monkey brains confirmed the utility of [18F]9 for evaluating target occupancy in vivo in higher species. In conclusion, our results indicated that [18F]9 is a promising PDE10A PET radioligand for clinical translation.

19.
Acta Pharm Sin B ; 12(7): 3103-3112, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35865094

RESUMO

Our previous study demonstrated that phosphodiesterase 8 (PDE8) could work as a potential target for vascular dementia (VaD) using a chemical probe 3a. However, compound 3a is a chiral compound which was obtained by chiral resolution on HPLC, restricting its usage in clinic. Herein, a series of non-chiral 9-benzyl-2-chloro-adenine derivatives were discovered as novel PDE8 inhibitors. Lead 15 exhibited potent inhibitory activity against PDE8A (IC50 = 11 nmol/L), high selectivity over other PDEs, and remarkable drug-like properties (worthy to mention is that its bioavailability was up to 100%). Oral administration of 15 significantly improved the cAMP level of the right brain and exhibited dose-dependent effects on cognitive improvement in a VaD mouse model. Notably, the X-ray crystal structure of the PDE8A-15 complex showed that the potent affinity and high selectivity of 15 might come from the distinctive interactions with H-pocket including T-shaped π-π interactions with Phe785 as well as a unique H-bond network, which have never been observed in other PDE-inhibitor complex before, providing new strategies for the further rational design of novel selective inhibitors against PDE8.

20.
J Med Chem ; 65(12): 8444-8455, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35666471

RESUMO

Our previous research demonstrated that phosphodiesterase-1 (PDE1) could work as a potential target against idiopathic pulmonary fibrosis. Nimodipine, a calcium antagonist commonly used to improve hypertension, was reported to have inhibition against PDE1. Herein, a series of nimodipine analogues were discovered as novel selective and potent PDE1 inhibitors after structural modifications. Compound 2g exhibited excellent inhibitory activity against PDE1C (IC50 = 10 nM), high selectivity over other PDEs except for PDE4, and weak calcium channel antagonistic activity. Administration of compound 2g exhibited remarkable therapeutic effects in a rat model of pulmonary fibrosis induced by bleomycin and prevented myofibroblast differentiation induced by TGF-ß1. The expressions of PDE1B and PDE1C were found to be increased and concentrated in the focus of fibrosis. Compound 2g increased the levels of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in the lungs of rats with pulmonary fibrosis, supporting the fact that the anti-fibrosis effects of 2g were through the regulation of cAMP and cGMP.


Assuntos
Fibrose Pulmonar Idiopática , Inibidores de Fosfodiesterase , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Fibrose Pulmonar Idiopática/tratamento farmacológico , Nimodipina/farmacologia , Nimodipina/uso terapêutico , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...