Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
1.
Curr Microbiol ; 81(10): 336, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223428

RESUMO

Fatty acids (FAs) participate in extensive physiological activities such as energy metabolism, transcriptional control, and cell signaling. In bacteria, FAs are degraded and utilized through various metabolic pathways, including ß-oxidation. Over the past ten years, significant progress has been made in studying FA oxidation in bacteria, particularly in E. coli, where the processes and roles of FA ß-oxidation have been comprehensively elucidated. Here, we provide an update on the new research achievements in FAs ß-oxidation in bacteria. Using Xanthomonas as an example, we introduce the oxidation process and regulation mechanism of the DSF-family quorum sensing signal. Based on current findings, we propose the specific enzymes required for ß-oxidation of several specific FAs. Finally, we discuss the future outlook on scientific issues that remain to be addressed. This paper supplies theoretical guidance for further study of the FA ß-oxidation pathway with particular emphasis on its connection to the pathogenicity mechanisms of bacteria.


Assuntos
Ácidos Graxos , Oxirredução , Percepção de Quorum , Transdução de Sinais , Xanthomonas , Ácidos Graxos/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Xanthomonas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Virulência , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética
2.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1753-1761, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233403

RESUMO

Warming drives material cycling in terrestrial ecosystems by affecting litter decomposition, as it can alter litter yield, quality and decomposer composition and activity. The effect of warming on the decomposition of mixed litter in arid and semi-arid zones remains unknown. We investigated the mass loss and nutrient release dynamics during 450 days of decomposition of Artemisia ordosica, Leymus secalinus, and their mixture in Mu Us Desert by open-top chambers and litter bags. The results showed interspecific differences in the responses to warming, in that warming promoted mass loss and N and P release from L. secalinus and inhibited mass loss and P but promoting N release from A. ordosica. Mixing of A. ordosica and L. secalinus litter inhibited decomposition. Warming enhanced the antagonistic effects of mixed decomposition. The total mass loss of mixed litter was decreased by 9%, and the release of N and P was decreased by 4.9% and 12.6%, respectively. The antagonistic effects of mixed litter mass loss and P release under the warming treatment gradually strengthened with time, with N release changing from a synergistic to an antagonistic effect at 150 d. The non-additive effects produced by the mixed decomposition of A. ordosica and L. secalinus litter were jointly regulated by temperature and time. Future research on mixed litter decomposition should consider the interaction between temperature and time.


Assuntos
Artemisia , Clima Desértico , Artemisia/crescimento & desenvolvimento , Artemisia/química , China , Poaceae/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/metabolismo , Nitrogênio/análise , Nitrogênio/química , Ecossistema , Fósforo/química , Fósforo/análise , Fatores de Tempo , Temperatura Alta , Aquecimento Global
3.
J Nanobiotechnology ; 22(1): 532, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223550

RESUMO

The recent development of nanobiomaterials has shed some light on the field of periodontal tissue regeneration. Laponite (LAP), an artificially synthesized two-dimensional (2D) disk-shaped nanosilicate, has garnered substantial attention in regenerative biomedical applications owing to its distinctive structure, exceptional biocompatibility and bioactivity. This study endeavors to comprehensively evaluate the influence of LAP on periodontal regeneration. The effects of LAP on periodontal ligament cells (PDLCs) on osteogenesis, cementogenesis and angiogenesis were systematically assessed, and the potential mechanism was explored through RNA sequencing. The results indicated that LAP improved osteogenic and cementogenic differentiation of PDLCs, the regulatory effects of LAP on PDLCs were closely correlated with activation of PI3K-AKT signaling pathway. Moreover, LAP enhanced angiogenesis indirectly via manipulating paracrine of PDLCs. Then, LAP was implanted into rat periodontal defect to confirm its regenerative potential. Both micro-CT and histological analysis indicated that LAP could facilitate periodontal tissue regeneration in vivo. These findings provide insights into the bioactivity and underlying mechanism of LAP on PDLCs, highlighting it might be a potential therapeutic option in periodontal therapy.


Assuntos
Diferenciação Celular , Osteogênese , Ligamento Periodontal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Regeneração , Transdução de Sinais , Silicatos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Silicatos/farmacologia , Silicatos/química , Humanos , Diferenciação Celular/efeitos dos fármacos , Masculino , Células Cultivadas , Cementogênese
5.
Regen Biomater ; 11: rbae106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263324

RESUMO

Regeneration of oral craniofacial bone defects is a complex process, and reconstruction of large bone defects without the use of exogenous cells or bioactive substances remains a major challenge. Hydrogels are highly hydrophilic polymer networks with the potential to promote bone tissue regeneration. In this study, functional peptide Dentonin was loaded onto self-assembled peptide hydrogels (RAD) to constitute functionally self-assembling peptide RAD/Dentonin hydrogel scaffolds with a view that RAD/Dentonin hydrogel could facilitate vascularized bone regeneration in critical-size calvarial defects. The functionalized peptide RAD/Dentonin forms highly ordered ß-sheet supramolecular structures via non-covalent interactions like hydrogen bonding, ultimately assembling into nano-fiber network. RAD/Dentonin hydrogels exhibited desirable porosity and swelling properties, and appropriate biodegradability. RAD/Dentonin hydrogel supported the adhesion, proliferation and three-dimensional migration of bone marrow mesenchymal stem cells (BMSCs) and has the potential to induce differentiation of BMSCs towards osteogenesis through activation of the Wnt/ß-catenin pathway. Moreover, RAD/Dentonin hydrogel modulated paracrine secretion of BMSCs and increased the migration, tube formation and angiogenic gene expression of human umbilical vein endothelial cells (HUVECs), which boosted the angiogenic capacity of HUVECs. In vivo, RAD/Dentonin hydrogel significantly strengthened vascularized bone formation in rat calvarial defect. Taken together, these results indicated that the functionalized self-assembling peptide RAD/Dentonin hydrogel effectively enhance osteogenic differentiation of BMSCs, indirectly induce angiogenic effects in HUVECs, and facilitate vascularized bone regeneration in vivo. Thus, it is a promising bioactive material for oral and maxillofacial regeneration.

6.
BMC Biol ; 22(1): 192, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256796

RESUMO

BACKGROUND: N6-Methyladenosine (m6A) methylation, a common form of RNA modification, play an important role in the pathogenesis of various diseases and in the ontogeny of organisms. Nevertheless, the precise function of m6A methylation in photoaging remains unknown. OBJECTIVES: This study aims to investigate the biological role and underlying mechanism of m6A methylation in photoaging. METHODS: m6A dot blot, Real-time quantitative PCR (RT-qPCR), western blot and immunohistochemical (IHC) assays were employed to detect the m6A level and specific m6A methylase in ultraviolet ray (UVR)-induced photoaging tissue. The profile of m6A-tagged mRNA was identified by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq analysis. Finally, we investigated the regulatory mechanism of KIAA1429 by MeRIP-qPCR, RNA knockdown and immunofluorescence assay. RESULTS: m6A levels were increased in photoaging and were closely associated with the upregulation of KIAA1429 expression. 1331 differentially m6A methylated genes were identified in the UVR group compared with the control group, of which 1192 (90%) were hypermethylated. Gene ontology analysis showed that genes with m6A hypermethylation and mRNA downregulation were mainly involved in extracellular matrix metabolism and collagen metabolism-related processes. Furthermore, KIAA1429 knockdown abolished the downregulation of TGF-bRII and upregulation of MMP1 in UVR-irradiated human dermal fibroblasts (HDFs). Mechanically, we identified MFAP4 as a target of KIAA1429-mediated m6A modification and KIAA1429 might suppress collagen synthesis through an m6A-MFAP4-mediated process. CONCLUSIONS: The increased expression of KIAA1429 hinders collagen synthesis during UVR-induced photoaging, suggesting that KIAA1429 represents a potential candidate for targeted therapy to mitigate UVR-driven photoaging.


Assuntos
Colágeno , Envelhecimento da Pele , Envelhecimento da Pele/efeitos da radiação , Envelhecimento da Pele/genética , Colágeno/metabolismo , Animais , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos , Humanos , Raios Ultravioleta , Metilação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação
7.
Nanoscale ; 16(34): 16119-16126, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39101367

RESUMO

Microexplosion has been extensively studied in the context of fuel spray and droplet evaporation in engines, while its existence, impact and atomistic insight have rarely been explored in the context of flame synthesis of nanoparticles. In this study, reactive force-field molecular dynamics simulations are performed to elucidate the mechanisms of pyrolysis and oxidation of an isolated lithium nitrate nanodroplet. During the pyrolysis process, the nucleation and growth of a bubble are observed inside the droplet, which should be ascribed to the release of nitrogen and oxygen gases from the decomposition of lithium nitrate, ultimately leading to rapid droplet fragmentation (microexplosion). To demonstrate the role of microexplosion with various intensities, via altering ambient temperature and addition of oxygen gas into the environment, thorough analyses of bond reactions, droplet morphology and compounds of the synthesized lithium nanoparticles are carried out. With elevated ambient temperature, the droplet substantially expands due to bubble growth and the time required for droplet disruption is shortened, which implies the enhanced strength of microexplosion. Simultaneously, the connection between the lithium and other atoms becomes weak, as evidenced by a decrease in the number of lithium bonds. These give rise to a reduction in the quantity of large-sized lithium agglomerates and simultaneously an increase in the amount of fine lithium nanoparticles. To further clarify the reaction mechanism for a lithium-containing droplet under various ambient conditions, three reaction modes, i.e., core-shell diffusion-controlled, microexplosion-accelerated and microexplosion-dominated, are distinguished based on the intensity of microexplosion and the quality of synthesized lithium nanoparticles. Fine lithium-containing nanoparticles are expected to be produced in the microexplosion-dominated mode under high temperature conditions.

8.
Int J Biol Macromol ; 279(Pt 1): 134846, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39179062

RESUMO

The production of cassava (Manihot esculenta Crantz) is constantly threatened by cassava bacterial blight (CBB), caused by Xanthomonas phaseoli pv. manihotis (Xpm). Zinc finger-homeodomain (ZF-HD) belongs to a family of homozygous heterotypic cassette genes widely implicated in various developmental and physiological processes in plants. Despite their importance, a comprehensive analysis of ZF-HD genes, particularly those involved in disease resistance, has not been performed for cassava. In the present study, we utilized bioinformatics methods to identify 21 ZF-HD genes distributed across 11 chromosomes of cassava genome, with the majority exhibiting gene structure without introns. Phylogenetic analysis categorized these genes into two major groups (MIF and ZHD) with five subgroups. We observed fourteen pairs of duplicated genes, suggesting that segmental duplication has likely facilitated the expansion of the cassava ZF-HD gene family. Comparative orthologous analyses between cassava and other plant species shed light on the evolutionary trajectory of this gene family. Promoter analyses revealed multiple hormone- and stress-related elements, indicative of a functional role in stress responses. Expression profiling through RNA-seq and quantitative real-time PCR (qRT-PCR) demonstrated that certain cassava ZF-HD genes are up-regulated in response to Xpm infection, suggesting their involvement in defense mechanisms. Notably, MeZHD7 gene was identified via virus induced gene silencing (VIGS) as potentially crucial in conferring resistance against CBB. Results from subcellular localization experiments indicated that MeZHD7 was localized in the nucleus. The Luciferase reporter assay demonstrated an interaction between MeZHD7 and MeMIF5. These findings may lay the foundation for further cloning and functional analyses of cassava ZF-HD genes, particularly those associated with pathogen resistance.

9.
Environ Pollut ; 360: 124684, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39116924

RESUMO

Organophosphate esters (OPEs), increasingly used as new flame retardants and plasticizers in various products, have been found to have reproductive toxicity with overt endocrine disruption potential, yet the relationship between OPEs and early menopause remains unexplored. In the present study, we included 2429 women who participated in the U.S. National Health and Nutrition Examination Survey data (2011-2020) and had data of five urinary OPE metabolite levels and information of menopause characteristics, to investigate the associations of OPEs exposure with premature ovarian insufficiency (POI) and age of menopause. Multivariable adjusted linear and logistic regression were used to assess the associations of urinary OPE metabolites with age of menopause and POI, respectively. Quantile g computation (QGC) models were used to assess the relative contribution of individual metabolites to associations of OPE metabolites mixture. After adjusting for covariates, urinary bis(2-chloroethyl) phosphate (BCEP) concentration was inversely associated with menopause age (ß = - 0.21; 95% confidence interval (CI): 0.41, - 0.002). Higher urinary BCEP level (>median) was associated with earlier age at menopause (ß = -1.14, 95% CI: 1.83, - 0.46), and elevated odds of having POI (OR = 1.93; 95% CI: 1.02, 3.66). These associations were robust to the further adjustment of cardiometabolic diseases and related traits (e.g., body mass index). Further QGC analyses confirmed that BCEP was the dominant metabolite contributing most to the associations of OPEs mixture with age of menopause (weight = 49.5%) and POI (weight = 75.1%). No significant associations were found for the other four OPE metabolites. In this cross-sectional study, urinary BCEP level was associated with earlier menopause and increased odds of POI, highlighting the potential negative impacts of this chemical and its parent compound tris(2-chloroethyl) phosphate on ovarian function. Further studies are required to validate our findings and reveal potential underlying mechanisms.


Assuntos
Exposição Ambiental , Ésteres , Organofosfatos , Humanos , Feminino , Estudos Transversais , Organofosfatos/urina , Adulto , Pessoa de Meia-Idade , Exposição Ambiental/estatística & dados numéricos , Menopausa Precoce , Poluentes Ambientais/urina , Retardadores de Chama , Insuficiência Ovariana Primária/induzido quimicamente , Inquéritos Nutricionais , Menopausa
10.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39204090

RESUMO

Crocetin is an aglycone of crocin naturally occurring in saffron and has been proved to have antioxidant, anti-inflammatory, and antibacterial activities. In this experiment, the protective effect of crocetin on vital organs in high-altitude hypoxia rats was studied. Crocetin was prepared from gardenia by the alkaline hydrolysis method, and its reducing ability and free radical scavenging ability were tested. The in vitro anti-hypoxia vitality was studied on PC12 cells. The anti-hypoxic survival time of mice was determined in several models. The acute hypoxic injury rat model was established by simulating the hypoxic environment of 8000 m-high altitude for 24 h, and the anti-hypoxia effect of crocetin was evaluated by intraperitoneal injection with the doses of 10, 20, and 40 mg/kg. The water contents of the brain and lung were determined, and the pathological sections in the brain, lung, heart, liver, and kidney were observed by HE staining. The levels of oxidative stress (SOD, CAT, H2O2, GSH, GSH-Px, MDA) and inflammatory factors (IL-1ß, IL-6, TNF-α, VEGF) in rat brain, lung, heart, liver, and kidney tissues were detected by ELISA. The results indicated that crocetin exhibited strong reducing ability and free radical scavenging ability and could improve the activity of PC12 cells under hypoxia. After intraperitoneal injection with crocetin, the survival time of mice was prolonged, and the pathological damage, oxidative stress, and inflammation in rats' tissue were ameliorated. The protective activity of crocetin on vital organs in high-altitude hypoxia rats may be related to reducing oxidative stress and inhibiting inflammatory response.

11.
Front Pharmacol ; 15: 1435524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104400

RESUMO

Syringin, a phenylpropanoid glycoside, is widely distributed in various plants, such as Acanthopanax senticosus (Rupr. et Maxim.) Harms, Syringa reticulata (BL) Hara var. mandshurica (Maxim.) Hara, and Ilex rotunda Thumb. It serves as the main ingredient in numerous listed medicines, health products, and foods with immunomodulatory, anti-tumor, antihyperglycemic, and antihyperlipidemic effects. This review aims to systematically summarize syringin, including its physicochemical properties, plant sources, extraction and separation methods, total synthesis approaches, pharmacological activities, drug safety profiles, and preparations and applications. It will also cover the pharmacokinetics of syringin, followed by suggestions for future application prospects. The information on syringin was obtained from internationally recognized scientific databases through the Internet (PubMed, CNKI, Google Scholar, Baidu Scholar, Web of Science, Medline Plus, ACS Elsevier, and Flora of China) and libraries. Syringin, extraction and separation, pharmacological activities, preparations and applications, and pharmacokinetics were chosen as the keywords. According to statistics, syringin can be found in 23 families more than 60 genera, and over 100 species of plants. As a key component in many Chinese herbal medicines, syringin holds significant research value due to its unique sinapyl alcohol structure. Its diverse pharmacological effects include immunomodulatory activity, tumor suppression, hypoglycemic action, and hypolipidemic effects. Additionally, it has been shown to provide neuroprotection, liver protection, radiation protection, cardioprotection, and bone protection. Related preparations such as Aidi injection, compound cantharidin capsule, and Tanreqing injection have been widely used in clinical settings. Other studies on syringin such as extraction and isolation, total synthesis, safety profile assessment, and pharmacokinetics have also made progress. It is crucial for medical research to deeply explore its mechanism of action, especially regarding immunity and tumor therapy. Meanwhile, more robust support is needed to improve the utilization of plant resources and to develop extraction means adapted to the needs of industrial biochemistry to further promote economic development while protecting people's health.

12.
Phys Chem Chem Phys ; 26(33): 22189-22207, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39129480

RESUMO

Electrolyte decomposition and subsequent solid electrolyte interphase (SEI) are considered to be the primary cause of degradation of lithium batteries. We investigate the multiple factors that can affect the reductive decomposition pathways of ethylene carbonate (EC) and SEI formation using reactive molecular dynamics. Our simulations reveal the effects of lithium concentration, simulation temperature, and the imposition of external electric field on the decomposition reaction and pathways, respectively. The comparative results reveal the increasing lithium concentration has a strong influence on EC decomposition and its pathway at each temperature. Also, the increasing temperature and imposition of an external electric field have been found to non-electrochemically and electrochemically modify the decomposition pathways of EC. This study provides insights into not only the SEI chemistry in Li-ion batteries but also that in lithium metal batteries, which can potentially contribute to the design and optimisation of future novel battery materials and electrolyte solutions.

13.
Front Plant Sci ; 15: 1444234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157518

RESUMO

Lamiales, comprising over 23,755 species across 24 families, stands as a highly diverse and prolific plant group, playing a significant role in the cultivation of horticultural, ornamental, and medicinal plant varieties. Whole-genome duplication (WGD) and its subsequent post-polyploid diploidization (PPD) process represent the most drastic type of karyotype evolution, injecting significant potential for promoting the diversity of this lineage. However, polyploidization histories, as well as genome and subgenome fractionation following WGD events in Lamiales species, are still not well investigated. In this study, we constructed a chromosome-level genome assembly of Lindenbergia philippensis (Orobanchaceae) and conducted comparative genomic analyses with 14 other Lamiales species. L. philippensis is positioned closest to the parasitic lineage within Orobanchaceae and has a conserved karyotype. Through a combination of Ks analysis and syntenic depth analysis, we reconstructed and validated polyploidization histories of Lamiales species. Our results indicated that Primulina huaijiensis underwent three rounds of diploidization events following the γ-WGT event, rather than two rounds as reported. Besides, we reconfirmed that most Lamiales species shared a common diploidization event (L-WGD). Subsequently, we constructed the Lamiales Ancestral Karyotype (LAK), comprising 11 proto-chromosomes, and elucidated its evolutionary trajectory, highlighting the highly flexible reshuffling of the Lamiales paleogenome. We identified biased fractionation of subgenomes following the L-WGD event across eight species, and highlighted the positive impacts of non-WGD genes on gene family expansion. This study provides novel genomic resources and insights into polyploidy and karyotype remodeling of Lamiales species, essential for advancing our understanding of species diversification and genome evolution.

14.
Mol Cancer Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953880

RESUMO

Resistance to osimertinib represents a significant challenge for the successful treatment of non-small cell lung cancer (NSCLC) harboring activating mutations in epidermal growth factor receptor (EGFR). N6-methyladenosine (m6A) on mRNAs is critical for various biological processes, yet whether m6A regulates osimertinib resistance of NSCLC remains unknown. In this study, we demonstrated that developing osimertinib-resistant phenotypes depends on m6A reduction resulting from downexpression of m6A methyltransferase METTL14 in EGFR-mutant NSCLCs. Both in vitro and in vivo assay showed that specific knockdown of METTL14 was sufficient to confer osimertinib resistance and elevated expression of METTL14 rescued the efficacy of osimertinib in the resistant NSCLC cells. Mechanistically, METTL14 promoted m6A methylation of pro-apoptotic Bim mRNA and increased Bim mRNA stability and expression, resulting in activating the Bim-dependent pro-apoptotic signaling and thereby promoting osimertinib-induced cell apoptosis. Analysis of clinical samples revealed that decreased expression of METTL14 was observed in osimertinib-resistant NSCLC tissues and significantly associated with a poor prognosis. In conclusion, our study reveals a novel regulatory mechanism by which METTL14-mediated m6A methylation of Bim mRNA inhibited osimertinib resistance of NSCLC cells. It offers more evidences for the involvement of m6A modification in regulation of osimertinib resistance, and provides potential therapeutic targets for novel approaches to overcome the tolerance of osimertinib and other EGFR-TKIs. Implications: This study offers more evidences for the involvement of METTL14-mediated m6A modification in regulation of osimertinib resistance, and provides potential therapeutic targets for novel approaches to overcome the tolerance of osimertinib and other EGFR-TKIs.

15.
Phys Rev Lett ; 132(25): 250604, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38996251

RESUMO

As quantum circuits become more integrated and complex, additional error sources that were previously insignificant start to emerge. Consequently, the fidelity of quantum gates benchmarked under pristine conditions falls short of predicting their performance in realistic circuits. To overcome this problem, we must improve their robustness against pertinent error models besides isolated fidelity. Here, we report the experimental realization of robust quantum gates in superconducting quantum circuits based on a geometric framework for diagnosing and correcting various gate errors. Using quantum process tomography and randomized benchmarking, we demonstrate robust single-qubit gates against quasistatic noise and spatially correlated noise in a broad range of strengths, which are common sources of coherent errors in large-scale quantum circuits. We also apply our method to nonstatic noises and to realize robust two-qubit gates. Our Letter provides a versatile toolbox for achieving noise-resilient complex quantum circuits.

16.
Circulation ; 150(3): 215-229, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39008559

RESUMO

BACKGROUND: Dietary acculturation, or adoption of dominant culture diet by migrant groups, influences human health. We aimed to examine dietary acculturation and its relationships with cardiovascular disease (CVD), gut microbiota, and blood metabolites among US Hispanic and Latino adults. METHODS: In the HCHS/SOL (Hispanic Community Health Study/Study of Latinos), US exposure was defined by years in the United States (50 states and Washington, DC) and US nativity. A dietary acculturation pattern was derived from 14 172 participants with two 24-hour dietary recalls at baseline (2008-2011) using least absolute shrinkage and selection operator regression, with food groups as predictors of US exposure. We evaluated associations of dietary acculturation with incident CVD across ≈7 years of follow-up (n=211/14 172 cases/total) and gut microbiota (n=2349; visit 2, 2014 to 2017). Serum metabolites associated with both dietary acculturation-related gut microbiota (n=694) and incident CVD (n=108/5256 cases/total) were used as proxy measures to assess the association of diet-related gut microbiome with incident CVD. RESULTS: We identified an empirical US-oriented dietary acculturation score that increased with US exposure. Higher dietary acculturation score was associated with higher risk of incident CVD (hazard ratio per SD, 1.33 [95% CI, 1.13-1.57]), adjusted for sociodemographic, lifestyle, and clinical factors. Sixty-nine microbial species (17 enriched from diverse species, 52 depleted mainly from fiber-utilizing Clostridia and Prevotella species) were associated with dietary acculturation, driven by lower intakes of whole grains, beans, and fruits and higher intakes of refined grains. Twenty-five metabolites, involved predominantly in fatty acid and glycerophospholipid metabolism (eg, branched-chain 14:0 dicarboxylic acid** and glycerophosphoethanolamine), were associated with both diet acculturation-related gut microbiota and incident CVD. Proxy association analysis based on these metabolites suggested a positive relationship between diet acculturation-related microbiome and risk of CVD (r=0.70, P<0.001). CONCLUSIONS: Among US Hispanic and Latino adults, greater dietary acculturation was associated with elevated CVD risk, possibly through alterations in gut microbiota and related metabolites. Diet and microbiota-targeted interventions may offer opportunities to mitigate CVD burdens of dietary acculturation.


Assuntos
Aculturação , Doenças Cardiovasculares , Dieta , Microbioma Gastrointestinal , Hispânico ou Latino , Humanos , Masculino , Feminino , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etnologia , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto , Dieta/efeitos adversos , Fatores de Risco , Incidência
17.
J Sci Food Agric ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980001

RESUMO

BACKGROUND: Relay intercropping of maize and soybean can improve land productivity. However, the mechanism behind N2O emissions in this practice remains unclear. A two-factor randomized block field trial was conducted to reveal the mechanism of N2O emissions in a full additive maize-soybean relay intercropping. Factor A was three cropping systems - that is, monoculture maize (Zea mays L.), monoculture soybean (Glycine max L. Merr.) and maize-soybean relay intercropping. Factor B was different N supply, containing no N, reduced N and conventional N. Differences in N2O emissions, soil properties, rhizosphere bacterial communities and yield advantage were evaluated. RESULTS: The land equivalent ratio was 1.55-2.44, and the cumulative N2O emission ( C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ ) was notably lower by 60.2% in intercropping than in monoculture, respectively. Reduced N declined C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ without penalty on the yield advantages. The relay intercropping shifted soil properties - for example, soil organic matter, total N, NH 4 + $$ {\mathrm{NH}}_4^{+} $$ and protease activity - and improved the soil microorganism community - for example, Proteobacteria and Acidobacteria. Intercropping reduced C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ by directly suppressing nirS- and amoA-regulated N2O generation during soil N cycling, or nirS- and amoA-mediated soil properties shifted to reduce C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ indirectly. Reduced N directly reduced C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ by decreasing soil N content and reducing soil microorganism activities to alleviate N2O produced in soil N cycling. CONCLUSION: Conducting a full additive maize-soybean relay intercropping with reduced nitrogen supply provides a way to alleviate N2O emissions without the penalty on the yield advantage by changing rhizosphere bacterial communities and soil N cycling. © 2024 Society of Chemical Industry.

18.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000433

RESUMO

Drought presents a significant abiotic stress that threatens crop productivity worldwide. Rhizosphere bacteria play pivotal roles in modulating plant growth and resilience to environmental stresses. Despite this, the extent to which rhizosphere bacteria are instrumental in plant responses to drought, and whether distinct cassava (Manihot esculenta Crantz) varieties harbor specific rhizosphere bacterial assemblages, remains unclear. In this study, we measured the growth and physiological characteristics, as well as the physical and chemical properties of the rhizosphere soil of drought-tolerant (SC124) and drought-sensitive (SC8) cassava varieties under conditions of both well-watered and drought stress. Employing 16S rDNA high-throughput sequencing, we analyzed the composition and dynamics of the rhizosphere bacterial community. Under drought stress, biomass, plant height, stem diameter, quantum efficiency of photosystem II (Fv/Fm), and soluble sugar of cassava decreased for both SC8 and SC124. The two varieties' rhizosphere bacterial communities' overall taxonomic structure was highly similar, but there were slight differences in relative abundance. SC124 mainly relied on Gamma-proteobacteria and Acidobacteriae in response to drought stress, and the abundance of this class was positively correlated with soil acid phosphatase. SC8 mainly relied on Actinobacteria in response to drought stress, and the abundance of this class was positively correlated with soil urease and soil saccharase. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of cassava to drought stress and clarified that this process is significantly related to variety.


Assuntos
Secas , Manihot , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Manihot/microbiologia , Bactérias/classificação , Bactérias/genética , RNA Ribossômico 16S/genética , Microbiota , Raízes de Plantas/microbiologia , Solo/química
19.
Int J Biol Macromol ; 276(Pt 1): 133775, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986979

RESUMO

Barrier membranes play a prominent role in guided bone regeneration (GBR), and polycaprolactone (PCL) is an attractive biomaterial for the fabrication of barrier membranes. However, these nanofiber membranes (NFMs) require modification to improve their biological activity. PCL-NFMs incorporating with laponite (LAP) achieve biofunctional modification. Decellularized extracellular matrix (dECM) could modulate cell behaviour. The present study combined dECM with PCL/LAP-NFMs to generate a promising strategy for bone tissue regeneration. Bone marrow mesenchymal stem cells (BMSCs) were cultured on NFMs and deposited with an abundant extracellular matrix (ECM), which was subsequently decellularized to obtain dECM-modified PCL/LAP-NFMs (PCL/LAP-dECM-NFMs). The biological functions of the membranes were evaluated by reseeding MC3T3-E1 cells in vitro and transplanting them into rat calvarial defects in vivo. These results indicate that PCL/LAP-dECM-NFMs were successfully constructed. The presence of dECM slightly improved the mechanical properties of the NFMs, which exhibited a Young's modulus of 0.269 MPa, ultimate tensile strength of 2.04 MPa and elongation at break of 51.62 %. In vitro, the PCL/LAP-dECM-NFMs had favourable cytocompatibility, and the enhanced hydrophilicity was conducive to cell adhesion, proliferation, and osteoblast differentiation. PCL/LAP-dECM-NFMs exhibited an excellent bone repair capacity in vivo. Overall, dECM-modified PCL/LAP-NFMs should be promising biomimetic barrier membranes for GBR.


Assuntos
Regeneração Óssea , Matriz Extracelular , Células-Tronco Mesenquimais , Poliésteres , Silicatos , Poliésteres/química , Animais , Silicatos/química , Silicatos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Matriz Extracelular/química , Ratos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Membranas Artificiais , Nanofibras/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biomimética/métodos
20.
J Chem Theory Comput ; 20(12): 5176-5187, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38861421

RESUMO

An accurate semilocal kinetic energy density functional (KEDF) is crucial for reliable orbital-free density functional theory calculations. In our study, we assessed the performance of representative semilocal KEDFs using a more stringent indicator. Our findings highlight the superiority of the Perdew-Constantin (PC) functional in delivering energies close to the reference values. Upon analysis of the PC functional, we identified that enhancing its performance can be achieved through a more effective region selection regime. Experimenting with various region selection indicators, we discovered that the Laplacian-dependent reduced density gradient proves to be helpful. Subsequently, we empirically constructed an augmented variant of the PC functional, which not only yields energies close to the references but also, more importantly, demonstrates qualitative predictions for stable molecules and provides reasonable quantitative estimates for bond lengths in diatomic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...