Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 3(10): 2736-2748, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885587

RESUMO

Synthetic fuels produced from CO2 show promise in combating climate change. The reverse water gas shift (RWGS) reaction is the key to opening the CO2 molecule, and CO serves as a versatile intermediate for creating various hydrocarbons. Mo-based catalysts are of great interest for RWGS reactions featured for their stability and strong metal-oxygen interactions. Our study identified Mo defects as the intrinsic origin of the high activity of cluster Mo2C for CO2-selective hydrogenation. Specifically, we found that defected Mo2C clusters supported on nitrogen-doped graphene exhibited exceptional catalytic performance, attaining a reaction rate of 6.3 gCO/gcat/h at 400 °C with over 99% CO selectivity and good stability. Such a catalyst outperformed other Mo-based catalysts and noble metal-based catalysts in terms of facile dissociation of CO2, highly selective hydrogenation, and nonbarrier liberation of CO. Our study revealed that as a potential descriptor, the atomic magnetism linearly correlates to the liberation capacity of CO, and Mo defects facilitated product desorption by reducing the magnetization of the adsorption site. On the other hand, the defects were effective in neutralizing the negative charges of surface hydrogen, which is crucial for selective hydrogenation. Finally, we have successfully demonstrated that the combination of a carbon support and the carbonization process synergistically serves as a feasible strategy for creating rich Mo defects, and biochar can be a low-cost alternative option for large-scale applications.

2.
J Am Chem Soc ; 145(35): 19164-19170, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37610128

RESUMO

A ZnII8L6 pseudocube containing anthracene-centered ligands, a ZnII4L'4 tetrahedron with a similar side length as the cube, and a trigonal prism ZnII6L3L'2 were formed in equilibrium from a common set of subcomponents. Hetero-Diels-Alder reaction with photogenerated singlet oxygen transformed the anthracene-containing "L" ligands into endoperoxide "LO" ones and ultimately drove the integrative self-sorting to form the trigonal prismatic cage ZnII6LO3L'2 exclusively. This ZnII6LO3L'2 structure lost dioxygen in a retro-Diels-Alder reaction after heating, which resulted in reversion to the initial ZnII8L6 + ZnII4L'4 ⇌ 2 × ZnII6L3L'2 equilibrating system. Whereas the ZnII8L6 pseudocube had a cavity too small for guest encapsulation, the ZnII6L3L'2 and ZnII6LO3L'2 trigonal prisms possessed peanut-shaped internal cavities with two isolated compartments divided by bulky anthracene panels. Guest binding was also observed to drive the equilibrating system toward exclusive formation of the ZnII6L3L'2 structure, even in the absence of reaction with singlet oxygen.

3.
J Hazard Mater ; 446: 130663, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608584

RESUMO

Chromium(VI) (Cr(VI)), a highly toxic metal ion, generally co-exists with organic pollutants in industrial effluents. The clean and effective technology for water purification is an imperative issue but still a challenging task. A series of Bi7O9I3/g-C3N4 (BOI/CN) composites modified by lignin-derived carbon quantum dots (CQDs) were fabricated by hydrothermal method and applied for synchronous photocatalytic removal of Cr (Ⅵ) and levofloxacin (LEV). With the modification of CQDs in BOI/CN heterojunction, the 0.5-CQD/BOI/CN photocatalyst (0.5% content of CQDs) exhibited stronger light-harvesting capacity, more efficient charge separation, and faster electron transfer. Compared to those of BOI (51.2%), CN (36.8%), and BOI/CN (74.4%), the photoreduction efficiency of Cr(VI) reached up to 100% by 0.5-CQD/BOI/CN under 60 min of light irradiation, together with 94.8% degradation efficiency of LEV. The degradation of LEV was dominantly controlled by active species (•OH and •O2-) identified by electron paramagnetic resonance analysis and free radical trapping experiments. The intermediates of LEV were determined by LC-MS and the possible degradation pathway was speculated in combination with density functional theory calculation, involving defluorination, decarboxylation, quinolone rings opening, and piperazine moieties oxidation reactions. This work provides an advanced strategy for the fabrication of high-efficiency CQDs-based Z-scheme photocatalysts for environmental remediation.

4.
Phys Chem Chem Phys ; 24(17): 10147-10159, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35420100

RESUMO

Characterizing the key length and energy scales of intermolecular interactions, Lennard-Jones parameters, i.e., collision diameter and well depth, are prerequisites for predicting transport properties and rate constants of chemical species in dilute gases. Due to anisotropy in molecular structures, Lennard-Jones parameters of many polyatomic molecules are only empirically estimated or even undetermined. This study focuses on determining the effective Lennard-Jones parameters between a polyatomic molecule and a bath gas molecule from interatomic interactions. An iterative search algorithm is developed to find orientation-dependent collision diameters and well depths on intermolecular potential energy surfaces. An orientation-averaging rule based on characteristic variables is proposed to derive the effective parameters. Cross-interaction parameters for twelve hydrocarbons with varying molecular shapes, including long-chain and planar ones, interacting with four bath gases He, Ar, N2, and O2 are predicted and reported. Three-dimensional parametric surfaces are constructed to quantitatively depict molecular anisotropy. Algorithmic complexity analysis and numerical experiments demonstrate that the iterative search algorithm is robust and efficient. By using the latest experimental diffusion data, it is found that the proposed orientation-averaging rule improves the prediction of cross-interaction Lennard-Jones parameters for polyatomic molecules, including for long-chain molecules that challenge the consistency of previous methods. By introducing characteristic variables, the present study shows a new route to determining effective Lennard-Jones parameters for polyatomic molecules.

5.
ChemSusChem ; 15(7): e202102439, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132790

RESUMO

For a heterogeneous catalytic process, the performance of catalysts could be improved by modifying the active metal with a second element. Determining the enhanced mechanism of the second element is essential to the rational design of catalysts. In this work, Zn was introduced as a second element into Ni/ZrO2 for CO2 hydrogenation. In contrast to Ni/ZrO2 , the selectivity of NiZn/ZrO2 is observed to shift from CH4 to CO. A series of structural characterization results reveals that Zn is atomically dispersed in the NiO and ZrO2 phases as NiZnOx and ZnZrOx , respectively during CO2 hydrogenation, stabilizing a higher valence state of Ni (Niδ+ ) under a hydrogenation atmosphere over Ni-O-Zn site and thus promoting the generation of CO. These findings shed light on the O-mediated bimetallic effect of NiZn/ZrO2 and bring new insight into the rational design of more efficient heterogeneous catalysts.

6.
ACS Appl Mater Interfaces ; 13(47): 56465-56475, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784479

RESUMO

Lignin converted to carbon quantum dots (CQDs) attracts tremendous attention for large-scale production of carbon nanomaterials and value-added disposal of biomass wastes (such as the black liquor from pulping industry and the residue from hydrolysis of biomass). The green synthesis of lignin-derived CQDs is reported via a facile two-step method with the adjustment of acid additives containing N or S. The resulting series of CQDs exhibit bright fluorescence in gradient colors from blue to yellowish green, among which the N, S co-doped CQDs with the addition of 2,4-diaminobenzene sulfonic acid show an optimal fluorescence quantum yield (QY) of 30.5%. The red-shift photoluminescence emission behaviors of these CQDs can be attributed to the increased graphitization degree and reduced optical energy band gaps (2.47 → 2.17 eV) with regard to the incorporation of various heteroatoms. The improved fluorescence QYs are consistent with the variation trend of the increased N/C content in the CQDs. The yellowish green-emissive CQDs with bright fluorescence, strong water solubility, and excellent chemical stability perform well in anti-counterfeiting printing. The promising and sustainable approach for the synthesis of tunable fluorescent CQDs exhibits the value-added utilization of lignin for the fluorescence ink production.

7.
ACS Omega ; 5(15): 8744-8753, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32337436

RESUMO

Lean premixed flames are useful for low nitrogen oxide (NO x ) emissions but more prone to induce combustion instability in gas turbines. Combustion instability of a lean premixed swirling flame (LPSF) with hydrogen-methane was investigated experimentally. The effects of hydrogen addition on combustion instability with equivalence ratios 0.75-1 were investigated with acoustic frequencies (90-240 Hz) and acoustic amplitudes (the ratio of velocity fluctuation to an average velocity of 0-0.5), respectively, which are characterized by the gain and phase of the flame describing function (FDF). The evolution of vortex and the flame morphologies were observed by the particle image velocimetry (PIV), intensified charge-coupled device (ICCD), photomultiplier tube (PMT), and Cassegrain optical systems. The global and local heat release fluctuations of the LPSF were shown by CH*/OH* chemiluminescence and temperature measurements. Results show that the FDF features maximum and minimum gain values in the acoustic frequency range of 90-240 Hz and reaches local maximum peaks at 110 and 180 Hz and local minimum peaks at 160 Hz. It can also be observed that varying velocity amplitudes (0-0.5) have greater effects on the gain and phase of FDF than changing equivalence ratios (0.75-1) for lean swirling flames. Higher velocity amplitudes more effectively intensified the compression of the flame length, which enhanced the mixing of the high-burning gas and the unburned gas, and then heat release fluctuations increased. However, it is more interesting that the effects of hydrogen addition on the combustion instability of the LPSF show a completely opposite phenomenon due to acoustic frequency under all experimental conditions. The FDFs were compared at typical frequencies of 140 and 180 Hz, and it was found that combustion instability enhanced with increasing hydrogen content at 140 Hz while weakened at 180 Hz. The flow field of PIV images shows that it is related to the location and development of vortices in the flame with varying acoustic frequencies. The intensity of OH*/CH* chemiluminescence, local temperature, and heat release rate show the same changing trend with the flame morphology for two acoustic parameters with the increasing hydrogen content in the LPSF. This directly affects the compression and curvature of the LPSF and thereby changes the mixture and temperature of the combustible gas, which influence the heat release fluctuation of the LPSF.

8.
Opt Express ; 28(3): 3215-3225, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121994

RESUMO

Counter-propagating parametric conversion processes in non-linear bulk crystals have been shown to feature unique properties for efficient narrowband frequency conversion. In quantum optics, the generation of photon pairs with a counter-propagating parametric down-conversion process (PDC) in a waveguide, where signal and idler photons propagate in opposite directions, offers unique material-independent engineering capabilities. However, realizing counter-propagating PDC necessitates quasi-phase-matching (QPM) with extremely short poling periods. Here, we report on the generation of counter-propagating single-photon pairs in a self-made periodically poled lithium niobate waveguide with a poling period on the same order of magnitude as the generated wavelength. The single photons of the biphoton state bridge GHz and THz bandwidths with a separable joint temporal-spectral behavior. Furthermore, they allow the direct observation of the temporal envelope of heralded single photons with state-of-the art photon counters.

9.
J Hazard Mater ; 389: 122102, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32058893

RESUMO

Volatile organic compounds (VOCs) have attracted world-wide attention regarding their serious hazards on ecological environment and human health. Industrial processes such as fossil fuel combustion, petrochemicals, painting, coatings, pesticides, plastics, contributed to the large proportion of anthropogenic VOCs emission. Destructive methods (catalysis oxidation and biofiltration) and recovery methods (absorption, adsorption, condensation and membrane separation) have been developed for VOCs removal. Adsorption is established as one of the most promising strategies for VOCs abatement thanks to its characteristics of cost-effectiveness, simplicity and low energy consumption. The prominent progress in VOCs adsorption by different kinds of porous materials (such as carbon-based materials, oxygen-contained materials, organic polymers and composites is carefully summarized in this work, concerning the mechanism of adsorbate-adsorbent interactions, modification methods for the mentioned porous materials, and enhancement of VOCs adsorption capacity. This overview is to provide a comprehensive understanding of VOCs adsorption mechanisms and up-to-date progress of modification technologies for different porous materials.

10.
Light Sci Appl ; 8: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645918

RESUMO

Optical metasurfaces open new avenues for the precise wavefront control of light for integrated quantum technology. Here, we demonstrate a hybrid integrated quantum photonic system that is capable of entangling and disentangling two-photon spin states at a dielectric metasurface. Via the interference of single-photon pairs at a nanostructured dielectric metasurface, a path-entangled two-photon NOON state with circular polarization that exhibits a quantum HOM interference visibility of 86 ± 4% is generated. Furthermore, we demonstrate nonclassicality andphase sensitivity in a metasurface-based interferometer with a fringe visibility of 86.8 ± 1.1% in the coincidence counts. This high visibility proves the metasurface-induced path entanglement inside the interferometer. Our findings provide a promising way to develop hybrid-integrated quantum technology operating in the high-dimensional mode space in various applications, such as imaging, sensing, and computing.

11.
Appl Opt ; 58(22): 5910-5915, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503905

RESUMO

Frequency upconversion for single photons at telecom wavelengths is important to simultaneously meet the different wavelength requirements for long-distance communications and quantum memories in a quantum nodal network. It also enables the detection for the telecom "flying qubit" photons with silicon-based efficient single-photon detectors with low dark count (DC) rates. Here, we demonstrate the frequency upconversion of attenuated single photons, using a low-loss titanium-indiffused periodically poled lithium niobate waveguide, pumped with a readily available erbium-doped fiber amplifier in the L-band. Internal and conversion efficiencies up to 84.4% and 49.9% have been achieved, respectively. The DC rates are suppressed down to 44 kHz at 13.9% end-to-end quantum efficiency (including full conversion and detection), enabled by our long-wavelength pump configuration and narrow 3.5-GHz bandpass filtering.

12.
Phys Rev E ; 100(1-1): 013111, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499804

RESUMO

The interaction between a planar shock wave and a spherical flame is studied numerically for an ethylene-oxygen-nitrogen gas mixture. Influences of different initial reactive gas mixture gradients on the shock-flame interaction are investigated by using high-resolution computational simulations. The results show that the different reactive gas mixture gradients can greatly affect the flame evolution in shock accelerated flow. A detonation only emerges in the homogenous reactive gas mixture case, but a distinct shock bifurcation can be found in the inhomogeneous cases where the leftward reflected shock wave propagates in a reverse flow with a high transverse velocity gradient in the inhomogeneous cases. Also, the flame volume and heat release rate increase when the distribution of the reactive gas mixture is uniform or with a positive gradient in this paper, but decrease when the distribution of the reactive gas mixture is with a negative gradient, however, the ratio of unburned to burned regions in the flame zone shows just the opposite trends. Furthermore, the factors affecting the vorticity generation are also analyzed. It is found that the compression term has a relatively stronger influence on the vorticity generation in all the three cases except the period before the reflected shock wave impinges on the distorted flame in the homogeneous case, wherein the baroclinic effect dominates the vorticity generation in the flame zone.

13.
J Chem Phys ; 151(4): 044301, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370521

RESUMO

Classical trajectory simulations of intermolecular collisions were performed for a series of polycyclic aromatic hydrocarbons interacting with the bath gases helium and argon for bath gas temperature from 300 to 2500 K. The phase-space average energy transferred per deactivating collision, ⟨∆Edown⟩, was obtained. The Buckingham pairwise intermolecular potentials were validated against high-level quantum chemistry calculations and used in the simulations. The reactive force-field was used to describe intramolecular potentials. The dependence of ⟨∆Edown⟩ on initial vibrational energy is discussed. A canonical sampling method was compared with a microcanonical sampling method for selecting initial vibrational energy at high bath gas temperatures. Uncertainties introduced by the initial angular momentum distribution were identified. The dependence of the collisional energy transfer parameters on the type of bath gas and the molecular structure of polycyclic aromatic hydrocarbons was examined.

14.
Sci Adv ; 5(1): eaat1451, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30613766

RESUMO

Future quantum computation and networks require scalable monolithic circuits, which incorporate various advanced functionalities on a single physical substrate. Although substantial progress for various applications has already been demonstrated on different platforms, the range of diversified manipulation of photonic states on demand on a single chip has remained limited, especially dynamic time management. Here, we demonstrate an electro-optic device, including photon pair generation, propagation, electro-optical path routing, as well as a voltage-controllable time delay of up to ~12 ps on a single Ti:LiNbO3 waveguide chip. As an example, we demonstrate Hong-Ou-Mandel interference with a visibility of more than 93 ± 1.8%. Our chip not only enables the deliberate manipulation of photonic states by rotating the polarization but also provides precise time control. Our experiment reveals that we have full flexible control over single-qubit operations by harnessing the complete potential of fast on-chip electro-optic modulation.

15.
Lipids Health Dis ; 17(1): 70, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618361

RESUMO

BACKGROUND: The aim of this study was to investigate the prevalence changes of hyperlipidemia and hyperglycemia from 2009 to 2016 and the effectiveness of yearly physical examinations to hyperlipidemia and hyperglycemia prevention in Chengdu. METHODS: A total of 794 residents (499 males) who have undergone annual health check-ups for 8 consecutive years (from 2009 to 2016) in Chengdu, a city in southwest China were selected as the follow-up group, 7226 residents in 2009 and 75,068 residents in 2016 who underwent health examinations in the same hospital were chosen to be the contemporary control group. The concentration of fasting serum triglyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol (HDL-C) and glucose were measured and compared among these groups. RESULTS: There was a clear rise in the prevalence of hypercholesterolemia and hyperglycemia from 2009 to 2016 (p < 0.05). The follow-up group didn't show difference in levels of serum lipids and glucose compared with the general population after an 8-years' consecutive physical examination (p > 0.05), the follow-up cohort in the 8th year exhibited significant increases in serum total cholesterol and glucose compared with the 1st year (p < 0.05). CONCLUSION: The prevalence of hypercholesterolemia and hyperglycemia were increased significantly from 2009 to 2016. Annual physical examination didn't show a positive effect in the prevention of hypercholesterolemia and hyperglycemia. Health education should be improved to ensure the fulfillment of the preventive objective of yearly physical examination.


Assuntos
Hiperglicemia/epidemiologia , Hiperlipidemias/epidemiologia , Lipídeos/sangue , Exame Físico/métodos , Adulto , Fatores Etários , Idoso , Glicemia/análise , China/epidemiologia , Feminino , Humanos , Hiperglicemia/diagnóstico , Hiperglicemia/prevenção & controle , Hiperlipidemias/diagnóstico , Hiperlipidemias/prevenção & controle , Masculino , Pessoa de Meia-Idade
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 49(6): 924-928, 2018 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-32677406

RESUMO

OBJECTIVE: To explore the interference of exogenous insulin therapy on insulin detection test by electrochemical luminescence immunoassay (ECLIA). METHODS: Insulin level was determined by ECLIA. According to the requirements of EP7-A2 of American Society for Clinical Laboratory Standards Institute Standards, paired difference experiment was conducted to evaluate the interference of 8 kinds of exogenous insulin on insulin detection, dose effect experiment was conducted to determine the relationship between exogenous insulin concentration and interference degree. RESULTS: When the interfering substance concentrations were ≤250 µU/mL, Gansulin NⓇ, Gansulin RⓇ, Humulin RⓇ,Novolin RⓇ and LantusⓇ all showed linear positive interference, while LevemirⓇ showed a linear negative interference in high concentrations insulin and non-interfering in low concentrations insulin, HumalogⓇ and Novo RapidⓇ showed non-interference in insulin detection. CONCLUSIONS: The use of different exogenous insulin may have different interference on insulin measurement, which need laboratorians and physicians notice to avoid misdiagnosis.

17.
J R Soc Interface ; 14(137)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29212760

RESUMO

The glycocalyx has a prominent role in orchestrating multiple biological processes occurring at the plasma membrane. In this paper, an all-atom flow/glycocalyx system is constructed with the bulk flow velocity in the physiologically relevant ranges for the first time. The system is simulated by molecular dynamics using 5.8 million atoms. Flow dynamics and statistics in the presence of the glycocalyx are presented and discussed. Complex dynamic behaviours of the glycocalyx, particularly the sugar chains, are observed in response to blood flow. In turn, the motion of the glycocalyx, including swing and swirling, disturbs the flow by altering the velocity profiles and modifying the vorticity distributions. As a result, the initially one-dimensional forcing is spread to all directions in the region near the endothelial cell surface. Furthermore, the coupled dynamics exist not only between the flow and the glycocalyx but also within the glycocalyx molecular constituents. Shear stress distributions between one-dimer and three-dimer cases are also conducted. Finally, potential force transmission pathways are discussed based on the dynamics of the glycocalyx constituents, which provides new insight into the mechanism of mechanotransduction of the glycocalyx. These findings have relevance in the pathologies of glycocalyx-related diseases, for example in renal or cardiovascular conditions.


Assuntos
Células Endoteliais/química , Glicocálix/química , Modelos Biológicos , Simulação de Dinâmica Molecular , Simulação por Computador , Bicamadas Lipídicas/química
18.
Sci Rep ; 7(1): 14580, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109453

RESUMO

We propose a multi-component discrete Boltzmann model (DBM) for premixed, nonpremixed, or partially premixed nonequilibrium reactive flows. This model is suitable for both subsonic and supersonic flows with or without chemical reaction and/or external force. A two-dimensional sixteen-velocity model is constructed for the DBM. In the hydrodynamic limit, the DBM recovers the modified Navier-Stokes equations for reacting species in a force field. Compared to standard lattice Boltzmann models, the DBM presents not only more accurate hydrodynamic quantities, but also detailed nonequilibrium effects that are essential yet long-neglected by traditional fluid dynamics. Apart from nonequilibrium terms (viscous stress and heat flux) in conventional models, specific hydrodynamic and thermodynamic nonequilibrium quantities (high order kinetic moments and their departure from equilibrium) are dynamically obtained from the DBM in a straightforward way. Due to its generality, the developed methodology is applicable to a wide range of phenomena across many energy technologies, emissions reduction, environmental protection, mining accident prevention, chemical and process industry.

19.
Phys Rev E ; 95(4-1): 043304, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505730

RESUMO

In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.

20.
Polymers (Basel) ; 9(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30970917

RESUMO

Lignin as the most abundant source of aromatic chemicals in nature has attracted a great deal of attention in both academia and industry. Solvolysis is one of the promising methods to convert lignin to a number of petroleum-based aromatic chemicals. The process involving the depolymerization of the lignin macromolecule and repolymerization of fragments is complicated influenced by heating methods, reaction conditions, presence of a catalyst and solvent systems. Recently, numerous investigations attempted unveiling the inherent mechanism of this process in order to promote the production of valuable aromatics. Oxidative solvolysis of lignin can produce a number of the functionalized monomeric or oligomeric chemicals. A number of research groups should be greatly appreciated with regard to their contributions on the following two concerns: (1) the cracking mechanism of inter-unit linkages during the oxidative solvolysis of lignin; and (2) the development of novel catalysts for oxidative solvolysis of lignin and their performance. Investigations on lignin oxidative solvolysis are extensively overviewed in this work, concerning the above issues and the way-forward for lignin refinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...