Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 530, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704553

RESUMO

OBJECTIVE: Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS: Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS: Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION: CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.


Assuntos
Berberina , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Periodontite , Humanos , Periodontite/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Berberina/farmacologia , Berberina/uso terapêutico , Coptis chinensis , Rizoma , Interleucina-17/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas In Vitro , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo
2.
Clin Oral Investig ; 28(2): 129, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300315

RESUMO

OBJECTIVES: The research's goal is to look for any potential relationships between the systemic immune-inflammation index (SII) and the system inflammation response index (SIRI), along with inflammation indicators and the likelihood of periodontitis. METHODS: Ten thousand two hundred eighty-two individuals in sum were determined to be eligible for this cross-sectional study from the National Health and Nutrition Examination Survey (NHANES) between 2009 and 2014. Multiple logistic regression, generalized additive model, smooth curve fitting, subgroup analysis, and interaction tests were done for analyzing the association between periodontitis and SII, SIRI, and other inflammatory indicators. RESULTS: The analysis, adjusted for population weighting, revealed that individuals with moderate/severe periodontitis had SII levels of 545.46 (95% CI (529.10, 561.82), P = 0.0044) and SIRI levels of 1.33 (95% CI (1.29, 1.37), P < 0.0001). In a fully adjusted multivariate logistic regression model, SII was not sensibly associated with moderate/severe periodontitis among the continuous and quartile Q1-Q4 groups (OR = 0.97, 95% CI (0.91, 1.02)). The continuous variable of SIRI (OR = 1.11, 95% CI (1.06, 1.17)) and the quartile Q4 group (OR = 1.58, 95% CI (1.28, 1.94)) had a deemed significant positive association with moderate to severe periodontitis. In addition, other inflammatory indicators, especially NLR, PPN, PLR, MLR, PC, NC, and MC were observed to be notably involved moderate/severe periodontist in this research. CONCLUSION: We explored the association between periodontitis and two novel comprehensive markers of inflammation (SII and SIRI). CLINICAL RELEVANCE: These inflammatory markers are expected to serve as tools to assist clinicians in diagnosing periodontitis.


Assuntos
Inflamação , Periodontite , Humanos , Inquéritos Nutricionais , Estudos Transversais , Odontólogos
3.
Chem Sci ; 15(1): 95-101, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131067

RESUMO

Enhancing the electrochemical activity of graphene holds great significance for expanding its applications in various electrochemistry fields. In this study, we have demonstrated a facile and quantitative approach for modulating the defect density of single-layer graphene (SLG) via an electrochemically induced bromination process facilitated by cyclic voltammetry. This controlled defect engineering directly impacts the heterogeneous electron transfer (HET) rate of SLG. By utilizing Raman spectroscopy and scanning electrochemical microscopy (SECM), we have established a correlation between the HET kinetics and both the defect density (nD) and mean distance between defects (LD) of SLG. The variation of the HET rate (k0) with the defect density manifested a distinctive three-stage behavior. Initially, k0 increased slightly with the increasing nD, and then it experienced a rapid increase as nD further increased. However, once the defect density surpassed a critical value of about 1.8 × 1012 cm-2 (LD < 4.2 nm), k0 decreased rapidly. Notably, the results revealed a remarkable 35-fold enhancement of k0 under the optimal defect density conditions compared to pristine SLG. This research paves the way for controllable defect engineering as a powerful strategy to enhance the electrochemical activity of graphene, opening up new possibilities for its utilization in a wide range of electrochemical applications.

4.
Front Physiol ; 14: 1183204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250118

RESUMO

Background: Youth football in schools has experienced rapid growth in China. Despite the increase of players engaging in more frequent, intensive, and organized sports training at their early ages, the controversy over early specialization (ES) still exists. This study aims to: a) investigate the training situation of players in the Chinese School Football Programme and b) examine the associations of early specialization, sports volume, and maturity status with musculoskeletal injury. Methods: A cross-sectional survey was used. Players who participated in the National School Football Winter Camp were invited to fill out a questionnaire that included the data of maturity, ES, sports volume, and injury history (n = 88 boys and n = 90 girls). Results: The results have shown that 80.3% of the athletes were classified as ES, while 19.7% of them were classified as non-ES. Almost all athletes (96%) participated in a sport for more than 8 months in a year. Most athletes (75.8%) spent more than twice of the time on organized sports than leisure activities. 30.3% of the athletes trained on average more hours per week than the number of their ages. Binomial logistic regression models reflected the significant differences in the odds ratios (OR) of reporting a history of injury among athletes with different levels of specialization (p = 0.024) and the OR of reporting a history of leg injury among players with different weekly sports volumes (p = 0.038). Significant differences were also shown in the OR of players reporting foot injuries between players with different maturity states (p = 0.046), and the Chi-squared test showed significant differences in the OR of reporting acute injuries between players with different levels of specialization (p = 0.048) and weekly activity (p = 0.022). No significant differences were found between the remaining variables. Conclusion: Most school football elite players follow the ES pathway even though ES increases the risk of injury, especially acute injury. Pre-pubertal and early pubertal players have a higher incidence of foot injuries. Players who train more hours per week than their ages have more leg injuries and acute injuries. Therefore, priority protection and intervention should be carried out for populations with a high risk of injury.

5.
Cell Reprogram ; 25(2): 53-64, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37053510

RESUMO

Exosomes are one kind of small-cell extracellular membranous vesicles that can regulate intercellular communication and give rise to mediating the biological behaviors of cells, involving in tissue formation, repair, the modulation of inflammation, and nerve regeneration. The abundant kinds of cells can secret exosomes, among them, mesenchymal stem cells (MSCs) are very perfect cells for mass production of exosomes. Dental tissue-derived mesenchymal stem cells (DT-MSCs), including dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, stem cells from human periodontal ligament (PDLSCs), gingiva-derived mesenchymal stem cells, dental follicle stem cells, tooth germ stem cells, and alveolar bone-derived mesenchymal stem cells, are now known as a potent tool in the area of cell regeneration and therapy, more importantly, DT-MSCs can also release numerous types of exosomes, participating in the biological functions of cells. Hence, we briefly depict the characteristics of exosomes, give a detailed description of the biological functions and clinical application in some respects of exosomes from DT-MSCs through systematically reviewing the latest evidence, and provide a rationale for their use as tools for potential application in tissue engineering.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Ligamento Periodontal , Gengiva , Células-Tronco , Diferenciação Celular/fisiologia
6.
Micromachines (Basel) ; 13(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296093

RESUMO

Deep learning methods have exhibited the great capacity to process object detection tasks, offering a practical and viable approach in many applications. When researchers have advanced deep learning models to improve their performance, the model derived from the algorithmic improvement may itself require complementary increases in computational and power demands. Recently, model compression and pruning techniques have received more attention to promote the wide employment of the DNN model. Although these techniques have achieved a remarkable performance, the class imbalance issue during the mode compression process does not vanish. This paper exploits the Autonomous Binarized Focal Loss Enhanced Model Compression (ABFLMC) model to address the issue. Additionally, our proposed ABFLMC can automatically receive the dynamic difficulty term during the training process to improve performance and reduce complexity. A novel hardware architecture is proposed to accelerate inference. Our experimental results show that the ABFLMC can achieve higher accuracy, faster speed, and smaller model size.

7.
Bioresour Technol ; 331: 124973, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33798854

RESUMO

In this study, the reduction mechanism of using CO to reduce biomass-oxidized pellets (BOP) and general-oxidized pellets (GOP) was deeply analyzed. The effect of biomass addition on the reduction of oxidized pellets and the change of reduction kinetics were studied. The addition of 2 wt% biomass into pellets increases pores of the oxidized pellets, promotes the rate of CO entering the pellets and the overflow of CO2, which results in faster reduction of the oxidized pellets. The reduction reactions of BOP and GOP were controlled by internal diffusion, mixing control and interface control sequentially. Also, addition of the biomass to the pellets decreases the activation energy required for their reduction, from 87.30 to 80.65 kJ·mol-1. The addition of biomass shortens the reduction time by 3% which can reduce the energy consumption. Therefore, the biomass together with CO enhances the reduction of oxidized pellets and has real environmental benefits.


Assuntos
Monóxido de Carbono , Biomassa , Cinética
8.
Appl Spectrosc ; 74(11): 1365-1373, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32748642

RESUMO

Many foodstuffs are extremely susceptible to contamination with aflatoxins, in which aflatoxin B1 is highly toxic and carcinogenic. Therefore, it is crucial to develop a rapid and effective analytical method for detecting and monitoring aflatoxin B1 in food. Herein, a surface-enhanced Raman spectroscopic (SERS) method combined with QuEChERS (quick, easy, cheap-effective, rugged, safe) sample pretreatment technique was used to detect aflatoxin B1. Sample preparation was optimized into a one-step extraction method using an Au nanoparticle-based solution (Au sol) as the SERS detection substrate. An affordable portable Raman spectrometer was then used for rapid, label-free, quantitative detection of aflatoxin B1 levels in foodstuffs. This method showed a good linear log relationship between the Raman signal intensity of aflatoxin B1 in the 1-1000 µg L-1 concentration range with a limit of detection of 0.85 µg kg-1 and a correlation coefficient of 0.9836. Rapid aflatoxin B1 detection times of ∼10 min for wheat, corn, and protein feed powder samples were also achieved. This method has high sensitivity, strong specificity, excellent stability, is simple to use, economical, and is suitable for on-site detection, with good prospects for practical application in the field of food safety.


Assuntos
Aflatoxina B1/análise , Contaminação de Alimentos/análise , Inocuidade dos Alimentos/métodos , Triticum/química , Zea mays/química , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Análise Espectral Raman
9.
Bioresour Technol ; 315: 123831, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32707502

RESUMO

Catalytic pyrolysis of rain tree biomass (RTB), a typical horticultural waste, was investigated with nano-NiO as catalyst produced from hazardous nickel plating slag (NPS). It appeared from the analyses by FTIR, TGA, XRD, BET, and FESEM/EDX that nano-NiO produced had a SBET and mean particle size of 53.4 m2/g and 112.3 nm. The catalytic pyrolysis kinetics of RTB with and without catalyst were studied by Friedman method. It was found that the activation energy (Ea) was in the range of 177 to 360 kJ/mol at a conversion rate of 0.1 - 0.75. The results further revealed that the H2 increase ratio in pyrolysis above 500 °C was more than 40% in the presence of catalyst. Consequently, this study showed the great potential of nano-NiO as a high-efficiency catalyst in recovering energy from biomass.


Assuntos
Níquel , Pirólise , Biomassa , Óxidos , Chuva , Árvores
10.
Nanomaterials (Basel) ; 10(7)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708401

RESUMO

Ex situ catalytic pyrolysis of biomass using char-supported nanoparticles metals (Fe and Ni) catalyst for syngas production and tar decomposition was investigated. The characterizations of fresh Fe-Ni/char catalysts were determined by TGA, SEM-EDS, Brunauer-Emmett-Teller (BET), and XPS. The results indicated that nanoparticles metal substances (Fe and Ni) successfully impregnated into the char support and increased the thermal stability of Fe-Ni/char. Fe-Ni/char catalyst exhibited relatively superior catalytic performance, where the syngas yield and the molar ratio of H2/CO were 0.91 Nm3/kg biomass and 1.64, respectively. Moreover, the lowest tar yield (43.21 g/kg biomass) and the highest tar catalytic conversion efficiency (84.97 wt.%) were also obtained under the condition of Ni/char. Ultimate analysis and GC-MS were employed to analyze the characterization of tar, and the results indicated that the percentage of aromatic hydrocarbons appreciably increased with the significantly decrease in oxygenated compounds and nitrogenous compounds, especially in Fe-Ni/char catalyst, when compared with no catalyst pyrolysis. After catalytic pyrolysis, XPS was employed to investigate the surface valence states of the characteristic elements in the catalysts. The results indicated that the metallic oxides (MexOy) were reduced to metallic Me0 as active sites for tar catalytic pyrolysis. The main reactions pathway involved during ex situ catalytic pyrolysis of biomass based on char-supported catalyst was proposed. These findings indicate that char has the potential to be used as an efficient and low-cost catalyst toward biomass pyrolysis for syngas production and tar decomposition.

11.
Bioresour Technol ; 313: 123659, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32554151

RESUMO

This study reported the NaCl-enhanced anaerobic fermentation with cation-exchange resin regeneration waste liquid (CRWL) as alternative NaCl source for waste activated sludge (WAS) disposal and carbon recovery. Through 4-day CRWL-enhanced anaerobic fermentation at Na+ concentration of 0.34 mol/L, the Na+-caused sludge disintegration triggered numerous release of dissolved organic matters (DOMs), i.e. 371.6 mg/g VSS, with composition distribution: acetic acid (28.2%) > butyric acid (16.1%) ≈ valeric acid (17.8%) ≈ proteins (16.4%) > propionic acid (14.4%) > unknown (3.2%) > carbohydrates (3.9%). Satisfying chemical conditioning performance for the fermented sludge was observed at the FeCl3 dosage of 0.3 g/g DS, attributing to the roles of double-layer compression and electric neutralization. The capillary suction time (CST) and sludge cake moisture content were decreased to 60.3 s and 75.1%, against those of 607 s and 93.5% before conditioning, respectively. Such "treating waste by waste" strategy could provide numerous environmental and economic benefits.


Assuntos
Esgotos , Cloreto de Sódio , Anaerobiose , Cátions , Ácidos Graxos Voláteis , Fermentação , Eliminação de Resíduos Líquidos
12.
Nanotechnology ; 31(40): 405603, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32526722

RESUMO

The plasmonic properties of individual metallic nanostructures are of great importance for application in surface science, materials science, and nanophotonics. Herein, being facilitated with a home-made flow device and pulsed laser irradiation, we proposed a batch preparation protocol towards spherical Au nanoparticles (Au NPs) and cage shell entrapped spherical core nanoparticles (Au@cAu NPs) with highly uniform morphology and a tunable size distribution. The Fano resonance behavior exhibited by the effective interaction between spherical Au NPs and the silicon surface has great potential for the design of ultrasensitive optical sensing devices. In comparison with the spherical Au NP, the individual Au@cAu NP displayed not only a red-shifted and broadened localized surface plasmon resonance (LSPR) scattering peak, but also a higher electromagnetic field enhancement. Therefore, the Au@cAu NPs offer a better choice for plasmonic enhancement-based applications in the red and near-infrared region. In general, the current work provides a new and easy method for the large-scale preparation of gold-based uniform nanostructures, and offers an avenue to understand the interference of different plasmon modes in plasmonic systems, which has potential applications in surface science.

13.
Anal Chem ; 92(10): 7146-7153, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32297736

RESUMO

Metallic nanoclusters (NCs) have molecular-like structures and unique physical and chemical properties, making them an interesting new class of luminescent nanomaterials with various applications in chemical sensing, bioimaging, optoelectronics, light-emitting diodes (LEDs), etc. However, weak photoluminescence (PL) limits the practical applications of NCs. Herein, an effective and facile strategy of enhancing the PL of NCs was developed using Ag shell-isolated nanoparticle (Ag SHIN)-enhanced luminescence platforms with tuned SHINs shell thicknesses. 3D-FDTD theoretical calculations along with femtosecond transient absorption and fluorescence decay measurements were performed to elucidate the enhancement mechanisms. Maximum enhancements of up to 231-fold for the [Au7Ag8(C≡CtBu)12]+ cluster and 126-fold for DNA-templated Ag NCs (DNA-Ag NCs) were achieved. We evidenced a novel and versatile method of achieving large PL enhancements with NCs with potential for practical biosensing applications for identifying target DNA in ultrasensitive surface analysis.

14.
Biosens Bioelectron ; 154: 112067, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056962

RESUMO

The creatinine concentration of human urine is closely related to human kidney health and its rapid, quantitative, and low-cost detection has always been demanded. Herein, a surface-enhanced Raman spectroscopic (SERS) method for rapid and cost-effective quantification of creatinine concentrations in human urine was developed. A Au nanoparticle solution (Au sol) was used as a SERS substrate and the influence of different agglomerating salts on its sensitivity toward detecting creatinine concentrations was studied and optimized, as well as the effect of both the salt and Au sol concentrations. The variation in creatinine spectra over time on different substrates was also examined, demonstrating reproducible quantitative analysis of creatinine concentrations in solution. By adjusting the pH, a simple liquid-liquid solvent extraction procedure, which extracted creatinine from human urine, was used to increase the SERS detection selectivity toward creatinine in complex matrices. The quantitative results were compared to those obtained with a clinically validated enzymatic "creatinine kit (CK)." The limit of detection (LOD) for the SERS technique was 1.45 mg L-1, compared with 3.4 mg L-1 for the CK method. Furthermore, cross-comparing the results from the two methods, the average difference was 5.84% and the whole SERS detection process could be completed within 2 min compared with 11 min for the CK, indicating the practicality of the quantitative SERS technique. This novel quantitative technique shows promises as a high-throughput platform for relevant clinical and forensic analysis.


Assuntos
Técnicas Biossensoriais , Creatinina/isolamento & purificação , Nanopartículas Metálicas/química , Creatinina/urina , Ouro/química , Humanos , Análise Espectral Raman
15.
Onco Targets Ther ; 12: 8701-8714, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695428

RESUMO

PURPOSE: Regulator of G-protein signaling (RGS) proteins are GTPase-activating proteins that target the α-subunit of heterotrimeric G proteins. Many studies have shown that RGS proteins contribute to tumorigenesis and metastasis. However, the mechanism in which RGS proteins, especially RGS4, affect the development of non-small cell lung cancer (NSCLC) remains unclear. The aim of this study was to characterize the role of RGS4 in NSCLC. METHODS: RGS4 expression in NSCLC tissues was assessed using an immunohistochemistry tissue microarray. Additionally, RGS4 was knocked down using short-hairpin RNA to assess the regulatory function of RGS4 in the biological behaviors of human NSCLC cell lines. A xenograft lung cancer model in nude BALB/c mice was established to study whether RGS4 knockdown inhibits cancer cell proliferation in vivo. RESULTS: We observed an increase in RGS4 protein levels in NSCLC samples. RGS4 knockdown inhibited cell proliferation and induced apoptosis in H1299 and PC9 cell lines, but did not affect cell migration. Moreover, we found that RGS4 negatively regulated the expression of microRNA-16 (miR-16), a tumor suppressor. The inhibition of miR-16 resulted in upregulated RGS4 expression. We also found that RGS4 regulated the expression of brain-derived neurotrophic factor (BDNF) and activated the BDNF-tropomyosin receptor kinase B signaling pathway. CONCLUSION: This study revealed that RGS4 overexpression positively correlated with the development of NSCLC. TDownstream RGS4 targets (eg, miR-16 and BDNF) might be involved in the development of NSCLC and may serve as potential therapeutic targets for its treatment.

16.
Anal Chem ; 91(23): 15025-15031, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682106

RESUMO

Surface enhanced Raman spectroscopy (SERS) is an ultrasensitive label-free analytical technique that can provide unique chemical and structural fingerprint information. However, gaining reliable quantitative analysis with SERS remains a huge challenge because of poor reproducibility and the instability of nanostructured SERS active surfaces. Herein, an effective strategy of coating Au nanoparticles (NPs) with ultrathin and uniform Prussian blue (PB) shell (Au@PB NPs) was developed for quantitative detection of dopamine (DA) concentrations in blood serum and crystal violet (CV) contaminants in lake water. The only intense PB Raman signal at 2155 cm-1 served as an ideal and interference-free internal standard (IS) for correcting fluctuations in the Raman intensities of analytes. Also, the stability of Au@PB NPs was investigated, exhibiting good functionality in strong acid solutions and thermal stability at 100 °C. This work demonstrates a convenient and fast quantitative SERS technique for detecting analyte concentrations in complex systems and has a great number of potential applications for use in analytical chemistry.

17.
Bioprocess Biosyst Eng ; 42(11): 1721-1730, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31312897

RESUMO

Collecting microalgae from water with less energy and cost is significant to gain economic profit from microalgae harvesting and processing. Foam separation has certain advantages including low energy consumption, simple operation and easy maintenance of the equipment. Natural surfactants, compared to traditional surfactants, were used to harvest and separate the freshwater microalgae Desmodesmus brasiliensis by foam separation. Results showed a recovery percentage of 93.6% and an enrichment ratio of 23.1 with the natural surfactant cocamidopropyl betaine (CAPB), suggesting that this low-cost surfactant can be applied to microalgae biomass recovery on a commercial scale using foam separation with no negative effect on the content of microalgae chlorophyll, carotenoid or protein.


Assuntos
Betaína/análogos & derivados , Clorofíceas/citologia , Água Doce/microbiologia , Microalgas/citologia , Microalgas/isolamento & purificação , Tensoativos/química , Betaína/química , Floculação
18.
Talanta ; 203: 186-193, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202325

RESUMO

Nanostructured gold electrodes have been widely used for electrochemical trace analysis of Hg2+ because Hg2+ has superior specificity for the formation of gold amalgam. However, it is still very challenging to achieve both high sensitivity and reproducibility, especially for real environmental water samples due to surface poisoning by organic residues. In this work, we developed two strategies for addressing these challenges. First, we added NaBr (with a final concentration of 0.01 M) to the analytes; this enhanced the sensitivity by two orders of magnitude and improved the reproducibility to be better than RSD <15% because of the synergetic interaction of Br- with Hg2+ and gold at the interface. Second, we developed a pre-oxidation method using a glassy carbon electrode to remove organic residue from the analyte before Hg2+ analysis. The combination of these two approaches results in an efficient, reliable, and fast electrochemical detection technique for on-site trace analysis of Hg2+ that is in concentrations lower than that required by WHO for drinking water.

19.
BMC Cancer ; 17(1): 140, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209128

RESUMO

BACKGROUND: Dysregulation of microRNAs (miRNAs) is actively involved in the pathogenesis and tumorigenicity of colorectal cancer (CRC). miR-296 was found to play either oncogenic or tumor suppressive role in human cancers. However, the status of miR-296 and its function in CRC remain unknown. METHODS: The expression of miR-296 was confirmed by qRT-PCR in CRC tissues and cells, and its level was altered by corresponding miRNA vectors. Wound healing and Transwall assays were performed to detect the migration and invasion of CRC cells. The levels of proteins were measured using immunoblotting, immunohistochemistry and immunofluorescence. RESULTS: Underexpression of miR-296 was disclosed in CRC tissues and cells. Its decreased level was evidently correlated with adverse clinical parameters and poor prognosis of CRC patients. In vitro experiments indicated that miR-296 inhibited CRC cell migration and invasion. Mechanically, miR-296 inhibited the epithelial-mesenchymal transition (EMT) of CRC cells. A negative correlation between miR-296 and S100A4 expression was observed in CRC tissues. Luciferase reporter assays indicated that miR-296 inversely regulated the luciferase activity of 3'-UTR of S100A4. Herein, S100A4 was found to be a downstream molecule of miR-296 in CRC. Furthermore, S100A4 mediated the anti-metastatic effects of miR-296 on EMT, migration and invasion of CRC cells. CONCLUSIONS: miR-296 functions as an anti-metastatic factor mainly by suppressing S100A4 in CRC. It potentially acts as a prognostic predictor and a drug-target for CRC patients.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética , Adulto , Idoso , Linhagem Celular Tumoral , Colo/química , Colo/metabolismo , Neoplasias Colorretais/química , Feminino , Técnicas de Silenciamento de Genes , Histocitoquímica , Humanos , Masculino , MicroRNAs/análise , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína A4 de Ligação a Cálcio da Família S100/análise , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-25710112

RESUMO

In order to explore the key role of surface plasmon resonance (SPR) and active (3)O2 for the chemical transformation to 4,4-dimercaptoazobenzene (DMAB) from p-aminothiophenol (PATP) adsorbed on Ag or Au NPs, we systematically investigated the laser wavelength and temperature dependent surface-enhanced Raman spectra of PATP capped Ag and Au NPs. DMAB can be easily observed at the 514.5nm laser for Ag NPs but at the 632.8nm laser for Au NPs, indicating that a suitable energy level is necessary for the formation of DMAB. The tendency is consistent with the wavelength dependent SPR properties of Ag or Au NPs accordingly. With the energy provided by annealing, the transformation of PATP to DMAB is much easier on Ag NPs at a lower temperature, and more DMAB can be observed at the same temperature, compared to the case of Au NPs under the same condition. It is mainly due to the active (3)O2 on Ag surfaces could be more easily formed than that on Au surfaces.


Assuntos
Compostos de Anilina/química , Ouro , Nanopartículas Metálicas/química , Prata , Compostos de Sulfidrila/química , Adsorção , Lasers , Oxigênio/química , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...