RESUMO
G6PD deficiency results from mutations in the X-linked G6PD gene. More than 200 variants are associated with enzyme deficiency: each one of them may either cause predisposition to haemolytic anaemia triggered by exogenous agents (class B variants), or may cause a chronic haemolytic disorder (class A variants). Genotype-phenotype correlations are subtle. We report a rare G6PD variant, discovered in a baby presenting with severe jaundice and haemolytic anaemia since birth: the mutation of this class A variant was found to be p.(Arg454Pro). Two variants affecting the same codon were already known: G6PD Union, p.(Arg454Cys), and G6PD Andalus, p.(Arg454His). Both these class B variants and our class A variant exhibit severe G6PD deficiency. By molecular dynamics simulations, we performed a comparative analysis of the three mutants and of the wild-type G6PD. We found that the tetrameric structure of the enzyme is not perturbed in any of the variants; instead, loss of the positively charged Arg residue causes marked variant-specific rearrangement of hydrogen bonds, and it influences interactions with the substrates G6P and NADP. These findings explain severe deficiency of enzyme activity and may account for p.(Arg454Pro) expressing a more severe clinical phenotype.
RESUMO
Early malaria investigators were certainly correct in classifying the species falciparum and the species vivax as belonging to the same genus, Plasmodium [...].
RESUMO
Glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X-linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non-spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8-aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (Km G6P ), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants.
Assuntos
Deficiência de Glucosefosfato Desidrogenase , Masculino , Recém-Nascido , Humanos , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Eritrócitos , Polimorfismo Genético , Hemólise , Organização Mundial da SaúdeRESUMO
Three and a half years after the pandemic outbreak, now that WHO has formally declared that the emergency is over, COVID-19 is still a significant global issue. Here, we focus on recent developments in genetic and genomic research on COVID-19, and we give an outlook on state-of-the-art therapeutical approaches, as the pandemic is gradually transitioning to an endemic situation. The sequencing and characterization of rare alleles in different populations has made it possible to identify numerous genes that affect either susceptibility to COVID-19 or the severity of the disease. These findings provide a beginning to new avenues and pan-ethnic therapeutic approaches, as well as to potential genetic screening protocols. The causative virus, SARS-CoV-2, is still in the spotlight, but novel threatening virus could appear anywhere at any time. Therefore, continued vigilance and further research is warranted. We also note emphatically that to prevent future pandemics and other world-wide health crises, it is imperative to capitalize on what we have learnt from COVID-19: specifically, regarding its origins, the world's response, and insufficient preparedness. This requires unprecedented international collaboration and timely data sharing for the coordination of effective response and the rapid implementation of containment measures.
Assuntos
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2/genética , Evolução Molecular , Estudo de Associação Genômica Ampla , GenômicaRESUMO
I was attracted to hematology because by combining clinical findings with the use of a microscope and simple laboratory tests, one could often make a diagnosis. I was attracted to genetics when I learned about inherited blood disorders, at a time when we had only hints that somatic mutations were also important. It seemed clear that if we understood not only what genetic changes caused what diseases but also the mechanisms through which those genetic changes contribute to cause disease, we could improve management. Thus, I investigated many aspects of the glucose-6-phosphate dehydrogenase system, including cloning of the gene, and in the study of paroxysmal nocturnal hemoglobinuria (PNH), I found that it is a clonal disorder; subsequently, we were able to explain how a nonmalignant clone can expand, and I was involved in the first trial of PNH treatment by complement inhibition. I was fortunate to do clinical and research hematology in five countries; in all of them, I learned from mentors, from colleagues, and from patients.
Assuntos
Hemoglobinúria Paroxística , Humanos , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/patologia , Células Sanguíneas/patologia , Células Clonais/patologiaRESUMO
PNH is a chronic hemolytic disorder due to an intrinsic red cell abnormality. There is no evidence that either prolonged administration of corticosteroids or chemotherapy are beneficial in PNH. On the other hand, patients can live with PNH for many years with supportive management. At the moment complement inhibitor therapy is indicated in most cases; and it is highly desirable that the current financial barriers to this therapy be overcome.
Assuntos
Hemoglobinúria Paroxística , Humanos , Hemoglobinúria Paroxística/tratamento farmacológico , HemóliseRESUMO
In many countries, ß-thalassemia (ß-THAL) is not uncommon; however, it qualifies as a rare disease in the US and in European Union (EU), where thalassemia drugs are eligible for Orphan Drug Designation (ODD). In this paper, we evaluate all 28 ODDs for ß-THAL granted since 2001 in the US and the EU: of these, ten have since been discontinued, twelve are pending, and six have become licensed drugs available for clinical use. The prime mover for these advances has been the increasing depth of understanding of the pathophysiology of ß-THAL; at the same time, and even though only one-fifth of ß-THAL ODDs have become licensed drugs, the ODD legislation has clearly contributed substantially to the development of improved treatments for ß-THAL.
Assuntos
Produção de Droga sem Interesse Comercial , Talassemia beta , Humanos , Talassemia beta/tratamento farmacológico , Doenças Raras/tratamento farmacológico , Legislação de Medicamentos , União EuropeiaAssuntos
Inativadores do Complemento , Hemoglobinúria Paroxística , Hemólise , Inativadores do Complemento/uso terapêutico , Proteínas do Sistema Complemento/fisiologia , Hemoglobinúria Paroxística/complicações , Hemoglobinúria Paroxística/tratamento farmacológico , Hemólise/efeitos dos fármacos , Hemólise/fisiologia , HumanosRESUMO
COVID-19, which is caused by the SARS-CoV-2, has ravaged the world for the past 2 years. Here, we review the current state of research into the disease with focus on its history, human genetics and genomics and the transition from the pandemic to the endemic phase. We are particularly concerned by the lack of solid information from the initial phases of the pandemic that highlighted the necessity for better preparation to face similar future threats. On the other hand, we are gratified by the progress into human genetic susceptibility investigations and we believe now is the time to explore the transition from the pandemic to the endemic phase. The latter will require worldwide vigilance and cooperation, especially in emerging countries. In the transition to the endemic phase, vaccination rates have lagged and developed countries should assist, as warranted, in bolstering vaccination rates worldwide. We also discuss the current status of vaccines and the outlook for COVID-19.
Assuntos
COVID-19 , Influenza Humana , Humanos , Pandemias/prevenção & controle , SARS-CoV-2RESUMO
Through studies in mice and in humans, Stuart Orkin showed that GATA-1 is a master transcriptional regulator of hematopoiesis. He has highlighted the role of BCL11A in the fetal-adult hemoglobin switch. The Gairdner Foundation Award recognizes Orkin's contribution to the development of gene therapy of sickle cell disease.
Assuntos
Anemia Falciforme , Distinções e Prêmios , Terapia Genética , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Modelos Animais de Doenças , Hemoglobina Fetal/genética , Hematopoese/genética , Humanos , Camundongos , Proteínas Repressoras/genéticaAssuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Elastase de Leucócito/genética , Neutropenia/congênito , Medula Óssea/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/epidemiologia , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Gerenciamento Clínico , Humanos , Lactente , Masculino , Mutação , Neutropenia/epidemiologia , Neutropenia/genética , Neutropenia/patologia , Neutropenia/terapia , Tanzânia/epidemiologiaRESUMO
At least 16 genetically determined conditions qualify as red blood cell enzymopathies. They range in frequency from ultrarare to rare, with the exception of glucose-6-phosphate dehydrogenase deficiency, which is very common. Nearly all these enzymopathies manifest as chronic hemolytic anemias, with an onset often in the neonatal period. The diagnosis can be quite easy, such as when a child presents with dark urine after eating fava beans, or it can be quite difficult, such as when an adult presents with mild anemia and gallstones. In general, 4 steps are recommended: (1) recognizing chronic hemolytic anemia; (2) excluding acquired causes; (3) excluding hemoglobinopathies and membranopathies; (4) pinpointing which red blood cell enzyme is deficient. Step 4 requires 1 or many enzyme assays; alternatively, DNA testing against an appropriate gene panel can combine steps 3 and 4. Most patients with a red blood cell enzymopathy can be managed by good supportive care, including blood transfusion, iron chelation when necessary, and splenectomy in selected cases; however, some patients have serious extraerythrocytic manifestations that are difficult to manage. In the absence of these, red blood cell enzymopathies are in principle amenable to hematopoietic stem cell transplantation and gene therapy/gene editing.