Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407895, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949843

RESUMO

The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and-according to a structural model-active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.

2.
Nat Commun ; 15(1): 4588, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816433

RESUMO

Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.


Assuntos
Glicosiltransferases , Lycium , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosilação , Lycium/enzimologia , Lycium/metabolismo , Lycium/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Glicosídeos/metabolismo , Glicosídeos/química , Cristalografia por Raios X , Piperidinas/metabolismo , Piperidinas/química , Especificidade por Substrato
3.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38654452

RESUMO

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Assuntos
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aspergillus oryzae/enzimologia , Aspergillus oryzae/metabolismo , Família Multigênica , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
4.
J Nat Prod ; 87(5): 1338-1346, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38447084

RESUMO

Oxabornyl polyenes represent a unique group of polyketides characterized by a central polyene core flanked by a conserved oxabornyl moiety and a structurally diverse oxygen heterocyclic ring. They are widely distributed in fungi and possess a variety of biological activities. Due to the significant spatial separation between the two stereogenic ring systems, it is difficult to establish their overall relative configurations. Here, we isolated three oxabornyl polyenes, prugosenes A1-A3 (1-3), from Talaromyces sp. JNU18266-01. Although these compounds were first reported from Penicillium rugulosum, their overall relative and absolute configurations remained unassigned. By employing ozonolysis in combination with ECD calculations, we were able to establish their absolute configurations, and additionally obtained seven new chemical derivatives (4-10). Notably, through NMR data analysis and quantum chemical calculations, we achieved the structural revision of prugosene A2. Furthermore, prugosenes A1-A3 exhibited potent antiviral activity against the respiratory syncytial virus, with compound 1 displaying an IC50 value of 6.3 µM. Our study thus provides a valuable reference for absolute configuration assignment of oxabornyl polyene compounds.


Assuntos
Polienos , Polienos/química , Polienos/farmacologia , Estrutura Molecular , Talaromyces/química , Antivirais/farmacologia , Antivirais/química , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Humanos
5.
Nat Prod Rep ; 41(5): 748-783, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38265076

RESUMO

Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.


Assuntos
Fungos , Terpenos , Terpenos/metabolismo , Terpenos/química , Fungos/metabolismo , Fungos/química , Estrutura Molecular , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Sistema Enzimático do Citocromo P-450/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...