Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
J Colloid Interface Sci ; 674: 873-883, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38955018

RESUMO

Lithium-sulfur batteries (LSBs) hold promise as the next-generation lithium-ion batteries (LIBs) due to their ultra-high theoretical capacity and remarkable cost-efficiency. However, these batteries suffer from the serious shuttle effect, challenging their practical application. To address this challenge, we have developed a unique interlayer (HCON@CNWF) composed of hollow cerium oxide nanorods (CeO2) anchored to carbonized non-woven viscose fabric (CNWF), utilizing a straightforward template method. The prepared interlayer features a three-dimensional (3D) conductive network that serves as a protective barrier and enhances electron/ion transport. Additionally, the CeO2 component effectively chemisorbs and catalytically transforms lithium polysulfides (LiPSs), offering robust chemisorption and activation sites. Moreover, the unique porous structure of the HCON@CNWF not only physically adsorbs LiPSs but also provides ample space for sulfur's volume expansion, thus mitigating the shuttle effect and safeguarding the electrode against damage. These advantages collectively contribute to the battery's outstanding electrochemical performance, notably in retaining a reversible capacity of 80.82 % (792 ± 5.60 mAh g-1) of the initial value after 200 charge/discharge cycles at 0.5C. In addition, the battery with HCON@CNWF interlayer has excellent electrochemical performance at high sulfur loading (4 mg cm-2) and low liquid/sulfur ratio (7.5 µL mg-1). This study, thus, offers a novel approach to designing advanced interlayers that can enhance the performance of LSBs.

2.
Natl Sci Rev ; 11(6): nwae188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962716

RESUMO

Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice. We detected 177 084 high-quality TE variations and inferred their derived state using outgroups. We found TEs were one source of phenotypic variation during rice domestication and differentiation. We identified 1246 genes whose expression variation was associated with TEs but not single-nucleotide polymorphisms (SNPs), such as OsRbohB, and validated OsRbohB's relative expression activity using a dual-Luciferase (LUC) reporter assays system. Our pan-TE map allowed us to detect multiple novel loci associated with agronomic traits. Collectively, our findings highlight the contributions of TEs to domestication, differentiation and agronomic traits in rice, and there is massive potential for gene cloning and molecular breeding by the high-quality Asian pan-TE map we generated.

3.
Nanoscale ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953142

RESUMO

Conductive bridge random access memory (CBRAM) devices exhibit great potential as the next-generation nonvolatile memory devices. However, they suffer from two major disadvantages, namely relatively high power consumption and large cycle-to-cycle and device-to-device variations, which hinder their more extensive commercialization. To learn how to enhance their device performance, kinetic Monte Carlo (KMC) simulations were employed to illustrate the variation of electroforming processes in nanomanipulated CBRAM devices by introducing an ion-blocking layer with scalable nanopores and tuning the microstructures of dielectric layers. Both the size of nanopores and the inhomogeneity of dielectric layers have significant impacts on the forming processes of conductive filaments. The dielectric layer with a high-content loose texture plus the scalable nanopore-containing ion-blocking layer leads to the formation of size-controlled and uniform filaments, which remarkably contributes to miniaturizable and stable CBRAM devices. Our study provides insights into nanomanipulation strategies to realize high-performance CBRAM devices, still awaiting future experimental confirmation.

4.
Front Oncol ; 14: 1365460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919521

RESUMO

Background: Multiple myeloma (MM) exhibits considerable heterogeneity in treatment responses and survival rates, even when standardized care is administered. Ongoing efforts are focused on developing prognostic models to predict these outcomes more accurately. Recently, neutrophil extracellular traps (NETs) have emerged as a potential factor in MM progression, sparking investigation into their role in prognostication. Methods: In this study, a multi-gene risk scoring model was constructed using the intersection of NTEs and differentially expressed genes (DEGs), applying the least absolute shrinkage and selection operator (LASSO) Cox regression model. A nomogram was established, and the prognostic model's effectiveness was determined via Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). The ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA) were employed to evaluate the level of immune infiltration. The sensitivity of chemotherapy drugs was assessed using the Genomics of Drug Sensitivity in Cancer (GDSC) database. Ultimately, the presence of the detected genes was confirmed through quantitative real-time polymerase chain reaction (qRT-PCR) analysis in MM cell specimens. Results: 64 NETs-DEGs were yielded, and through univariate Cox regression and LASSO regression analysis, we constructed a risk score composed of six genes: CTSG, HSPE1, LDHA, MPO, PINK1, and VCAM1. MM patients in three independent datasets were classified into high- and low-risk groups according to the risk score. The overall survival (OS) of patients in the high-risk group was significantly reduced compared to the low-risk group. Furthermore, the risk score was an independent predictive factor for OS. In addition, interactions between the risk score, immune score, and immune cell infiltration were investigated. Further analysis indicated that patients in the high-risk group were more sensitive to a variety of chemotherapy and targeted drugs, including bortezomib. Moreover, the six genes provided insights into the progression of plasma cell disorders. Conclusion: This study offers novel insights into the roles of NETs in prognostic prediction, immune status, and drug sensitivity in MM, serving as a valuable supplement and enhancement to existing grading systems.

5.
Plant Cell ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916914

RESUMO

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one fifth of potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.

6.
Bioresour Technol ; 406: 130959, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876286

RESUMO

Despite the increased research efforts aimed at understanding iron-based conductive materials (CMs) for facilitating chain elongation (CE) to produce medium chain fatty acids (MCFAs), the impact of these materials on microbial community functions and the adaptation mechanisms to their biotoxicity remain unclear. This study found that the supply of zero-valent iron (ZVI) and magnetite enhanced the MCFAs carbon-flow distribution by 26 % and 52 %, respectively. Metagenomic analysis revealed the upregulation of fatty acid metabolism, pyruvate metabolism and ABC transporters with ZVI and magnetite. The predominant functional microorganisms were Massilibacterium and Tidjanibacter with ZVI, and were Petrimonas and Candidatus_Microthrix with magnetite. Furthermore, it was demonstrated that CE microorganisms respond and adapt to the biotoxicity of iron-based CMs by adjusting Two-component system and Quorum sensing for the first time. In summary, this study provided a new deep-insight on the feedback mechanisms of CE microorganisms on iron-based CMs.

7.
Bioresour Technol ; 406: 130958, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876284

RESUMO

To address the environmental hazards posed by high-yield soybean dreg (SD), a high-value strategy is firstly proposed by synthesizing caproate through chain elongation (CE). Optimized conditions for lactate-rich broth as intermediate, utilizing 50 % inoculum ratio, 40 g/L substrate concentration, and pH 5, resulting in 2.05 g/L caproate from direct fermentation. Leveraging lactate-rich broth supplemented with ethanol, caproate was optimized to 2.76 g/L under a refined electron donor to acceptor of 2:1. Furthermore, incorporating 20 g/L biochar elevated caproate production to 3.05 g/L and significantly shortened the lag phase. Mechanistic insights revealed that biochar's surface-existed quinone and hydroquinone groups exhibit potent redox characteristics, thereby facilitating electron transfer. Moreover, biochar up-regulated the abundance of key genes involved in CE process (especially fatty acids biosynthesis pathway), also enriching Lysinibacillus and Pseudomonas as an unrecognized cooperation to CE. This study paves a way for sustainable development of SD by upgrading to caproate.

8.
BMC Geriatr ; 24(1): 544, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909190

RESUMO

BACKGROUND: The accelerated growth of older individuals worldwide has increased the number of patients presenting with fragility hip fractures. Having a hip fracture can cause excess mortality, and patients with hip fracture have a higher risk of death than those without hip fracture. Most studies have treated hip fracture as a single, homogeneous condition, but hip fracture includes two major anatomic types: intertrochanteric fracture and femoral neck fracture. Few studies have specifically evaluated 1-year mortality risk in older individuals with femoral intertrochanteric fracture. The aim of this study was to evaluate 1-year mortality and factors associated with mortality in older individuals with femoral intertrochanteric fracture. METHODS: A retrospective review was conducted of 563 patients ≥ 65 years old who underwent surgery for femoral intertrochanteric fractures at our institution between January 2010 and August 2018. Patient demographics, comorbidities, and treatment were collected by retrospective chart review. Age, sex, Body Mass Index (BMI), American Society of Anesthesiologists (ASA) classification, Charlson comorbidity index (CCI), Arbeitsgemeinschaft Für Osteosynthesefragen (AO) fracture classification, haemoglobin value at admission, time to surgery, operation time, and intraoperative blood loss were risk factors to be tested. Multivariable logistic regression was used to evaluate associations between variables and death. RESULTS: Among the 563 patients, 49 died within 1 year after surgery, and the 1-year mortality rate was 8.7%. Multivariate analysis identified age > 80 years (OR = 4.038, P = 0.011), haemoglobin < 100 g/l (OR = 2.732, P = 0.002), ASA score ≥ 3 (OR = 2.551, P = 0.005), CCI ≥ 3 (OR = 18.412, P = 0.018) and time to surgery > 14 d (OR = 3.907, P = 0.030) as independent risk factors for 1-year mortality. Comorbidities such as myocardial infarction and chronic pulmonary disease were associated with 1-year mortality after adjusting for age > 80 years and time to surgery > 14 days. CONCLUSIONS: Patients over 80 years old with haemoglobin < 100 g/l, ASA score ≥ 3, CCI ≥ 3, and multiple comorbidities, especially myocardial infarction and chronic pulmonary disease before surgery, are at a higher risk of 1-year mortality. Doctors should pay more attention to these vulnerable patients, and a surgical delay greater than 14 days should be avoided.


Assuntos
Fraturas do Quadril , Centros de Atenção Terciária , Humanos , Masculino , Feminino , Idoso , Estudos Retrospectivos , Fraturas do Quadril/mortalidade , Fraturas do Quadril/cirurgia , China/epidemiologia , Idoso de 80 Anos ou mais , Fatores de Risco , Centros de Atenção Terciária/tendências , Medição de Risco/métodos
9.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930249

RESUMO

Thermal storage cement-based materials, formed by integrating phase change materials into cementitious materials, exhibit significant potential as energy storage materials. However, poor thermal conductivity severely limits the development and application of these materials. In this study, an amorphous SiO2 shell is encapsulated on a graphite surface to create a novel thermally modified admixture (C@SiO2). This material exhibits excellent thermal conductivity, and the surface-encapsulated amorphous SiO2 enhances its bond with cement. Further, C@SiO2 was added to the thermal storage cement-based materials at different volume ratios. The effects of C@SiO2 were evaluated by measuring the fluidity, thermal conductivity, phase change properties, temperature change, and compressive strength of various thermal storage cement-based materials. The results indicate that the newly designed thermal storage cement-based material with 10 vol% C@SiO2 increases the thermal conductivity coefficient by 63.6% and the latent heat of phase transition by 11.2% compared to common thermal storage cement-based materials. Moreover, C@SiO2 does not significantly impact the fluidity and compressive strength of the thermal storage cement-based material. This study suggests that C@SiO2 is a promising additive for enhancing thermal conductivity in thermal storage cement-based materials. The newly designed thermal storage cement-based material with 10 vol% C@SiO2 is a promising candidate for energy storage applications.

10.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38733636

RESUMO

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Assuntos
Aspergillus flavus , Óleo de Melaleuca , Terpenos , Triticum , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Óleo de Melaleuca/farmacologia , Terpenos/farmacologia , Triticum/microbiologia , Antifúngicos/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Testes de Sensibilidade Microbiana , Cromatografia Gasosa-Espectrometria de Massas , Grão Comestível/microbiologia , Conservação de Alimentos/métodos
11.
IUBMB Life ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721892

RESUMO

Low back pain is a common clinical symptom of intervertebral disc degeneration (IVDD), which seriously affects the quality of life of the patients. The abnormal apoptosis and senescence of nucleus pulposus cells (NPCs) play important roles in the pathogenesis of IVDD. PHLDA2 is an imprinted gene related to cell apoptosis and tumour progression. However, its role in NPC degeneration is not yet clear. Therefore, this study was set to explore the effects of PHLDA2 on NPC senescence and apoptosis and the underlying mechanisms. The expression of PHLDA2 was examined in human nucleus pulposus (NP) tissues and NPCs. Immunohistochemical staining, magnetic resonance imaging imaging and western blot were performed to evaluate the phenotypes of intervertebral discs. Senescence and apoptosis of NPCs were assessed by SA-ß-galactosidase, flow cytometry and western blot. Mitochondrial function was investigated by JC-1 staining and transmission electron microscopy. It was found that the expression level of PHLDA2 was abnormally elevated in degenerated human NP tissues and NPCs. Furthermore, knockdown of PHLDA2 can significantly inhibit senescence and apoptosis of NPCs, whereas overexpression of PHLDA2 can reverse senescence and apoptosis of NPCs in vitro. In vivo experiment further confirmed that PHLDA2 knockdown could alleviate IVDD in rats. Knockdown of PHLDA2 could also reverse senescence and apoptosis in IL-1ß-treated NPCs. JC-1 staining indicated PHLDA2's knockdown impaired disruption of the mitochondrial membrane potential and also ameliorated superstructural destruction of NPCs as showed by transmission electron microscopy. Finally, we found the PHLDA2 knockdown promoted Collagen-II expression and suppressed MMP3 expression in NPCs by repressing wnt/ß-catenin pathway. In conclusion, the results of the present study showed that PHLDA2 promotes IL-1ß-induced apoptosis and senescence of NP cells via mitochondrial route by activating the Wnt/ß-catenin pathway, and suggested that therapy targeting PHLDA2 may provide valuable insights into possible IVDD therapies.

12.
Heliyon ; 10(10): e31088, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803913

RESUMO

Background: The impact of capsular closure vs non-closure in hip arthroscopy for femoracetabular impingement (FAI) was assessed by a meta-analysis. Methods: With the most recent search update occurring in August 2022, relevant studies were found by searching the Pubmed and EMBASE databases. A collection of studies was made that conducted hip arthroscopy for FAI. Review Manager 5.3 was used to carry out the meta-analysis. The dichotomous and continuous factors were compared using the odds ratios (OR) and mean differences (MD). A fixed-effect or random-effect model was chosen, depending on the degree of heterogeneity (I2). Forest plots were used to assess the results. A significance level of P < 0.05 was applied to the statistical analysis. Results: Ultimately, 15 studies were incorporated into the meta-analysis. The surgery time was longer for the capsular closure group (CC group) compared to the non-closure (NC group) group. (P < 0.001, SMD = 8.59, 95%CI [7.40, 9.77], I2 = 32 %). Following hip arthroscopy, the CC group's mHHS was superior to that of the NC group (P = 0.001, MD = 2.05, 95%CI [0.83, 3.27], I2 = 42 %), HOS-ADL (P < 0.001, MD = 4.29, 95%CI [3.08, 5.50], I2 = 0 %). The capsular closure group had a reduced rate of postoperative complications (P = 0.001, OR = 0.21, 95%CI [0.08, 0.54], I2 = 0 %) and conversion to THA (P = 0.01, OR = 0.42, 95%CI [0.21, 0.83], I2 = 0 %) following hip arthroscopy than the non-closure group. The revision rate, VAS, and postoperative HOS-SSS did not significantly differ between these two groups (P>0.05). Conclusion: The current meta-analysis found that the closed group had a lower complication rate and considerably greater mHHS and HOS-ADL following surgery compared to the non-closed capsule group. Whether this is related to the continuous progress of biomechanical and clinical research techniques deserves our attention. Level of evidence: Level IV, systematic review of Level I through Level III studies.

13.
ACS Appl Mater Interfaces ; 16(20): 26428-26438, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718304

RESUMO

In order to realize the prevailing artificial intelligence technology, memristor-implemented in-memory or neuromorphic computing is highly expected to break the bottleneck of von Neumann computers. Although high-performance memristors have been vigorously developed in labs or in industry, systematic computational investigations on memristors are seldom. Hence, it is urgent to provide theoretical or computational support for the exploration of memristor operating mechanisms or the screening of memristor materials. Here, a computational method based on the main input parameters learned from the first-principles calculations was developed to measure resistance switching of two-terminal memristors with sandwiched metal/ferroelectric semiconductor/metal architectures, which strikingly agrees with the experimental measurements. Based on our developed method, the diverse multiterminal memristors were designed to fully exploit the application of interlocked ferroelectricity of a ferroelectric semiconductor and realize their heterosynaptic plasticity, and their heterosynaptic behaviors can still be well described. Our developed method can provide a paradigm for the emulation of ferroelectric memristors and inspire subsequent computational exploration. Furthermore, our study also supplies a device optimization strategy based on the interlocked ferroelectricity and easy processing of two-dimensional van der Waals ferroelectric semiconductors, and our proposed heterosynaptic memristors still await further experimental exploration.

14.
Natl Sci Rev ; 11(4): nwae043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650829

RESUMO

For sessile plants, gene expression plays a pivotal role in responding to salinity stress by activating or suppressing specific genes. However, our knowledge of genetic variations governing gene expression in response to salt stress remains limited in natural germplasm. Through transcriptome analysis of the Global Mini-Core Rice Collection consisting of a panel of 202 accessions, we identified 22 345 and 27 610 expression quantitative trait loci associated with the expression of 7787 and 9361 eGenes under normal and salt-stress conditions, respectively, leveraging the super pan-genome map. Notably, combined with genome-wide association studies, we swiftly pinpointed the potential candidate gene STG5-a major salt-tolerant locus known as qSTS5. Intriguingly, STG5 is required for maintaining Na+/K+ homeostasis by directly regulating the transcription of multiple members of the OsHKT gene family. Our study sheds light on how genetic variants influence the dynamic changes in gene expression responding to salinity stress and provides a valuable resource for the mining of salt-tolerant genes in the future.

15.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673216

RESUMO

In this study, composite particles of rGO/CoFe2O4 were synthesized using a solvothermal method to fabricate a low-density magnetorheological (MR) material with enhanced sedimentation stability. The morphology and crystallographic features of rGO/CoFe2O4 were characterized via SEM, TEM, and XRD, and its magnetic properties were tested using VSM. The MR fluid was formulated by blending rGO/CoFe2O4 particles into silicone oil. Under different magnet strengths (H), a rotational rheometer was used to test its MR properties. Typical MR properties were observed, including shear stress, viscosity, storage/loss modulus, and dynamic yield stress (τdy) following the Herschel-Bulkley model reaching 200 Pa when H is 342 kA/m. Furthermore, the yield stress of the MR fluid follows a power law relation as H increases and the index changes from 2.0 (in the low H region) to 1.5 (in the high H region). Finally, its MR efficiency was calculated to be about 104% at H of 342 kA/m.

16.
Environ Sci Pollut Res Int ; 31(23): 33610-33622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689043

RESUMO

Livestock manure is one of the most important pools of antibiotic resistance genes (ARGs) in the environment. Aerobic composting can effectively reduce the spread of antibiotic resistance risk in livestock manure. Understanding the effect of aerobic composting process parameters on manure-sourced ARGs is important to control their spreading risk. In this study, the effects of process parameters on ARGs during aerobic composting of pig manure were explored through data mining based on 191 valid data collected from literature. Machine learning (ML) models (XGBoost and Random Forest) were utilized to predict the rate of ARGs changes during pig manure composting. The model evaluation index of the XGBoost model (R2 = 0.651) was higher than that of the Random Forest (R2 = 0.490), indicating that XGBoost had better prediction performance. Feature importance was further calculated for the XGBoost model, and the XGBoost black box model was interpreted by Shapley additive explanations analysis. Results indicated that the influencing factors on the ARGs variation in pig manure were sequentially divided into thermophilic period, total composting period, composting real time, and thermophilic stage average temperature. The findings gave an insight into the application of ML models to predict and decipher the ARG changes during manure composting and provided suggestions for better composting manipulation and optimization of process parameters.


Assuntos
Compostagem , Resistência Microbiana a Medicamentos , Aprendizado de Máquina , Esterco , Compostagem/métodos , Animais , Suínos , Resistência Microbiana a Medicamentos/genética
17.
J Colloid Interface Sci ; 668: 120-131, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669990

RESUMO

In the present study, the catalyst modified with alkaline oxide can enhance the selectivity to primary amines. However, the addition of alkaline oxide inevitably reduces catalytic activity. In this study, NiCo-NC@BaO-MFC catalyst derived from zeolitic imidazolate framework-67, Ba(CH3COO)2, and melamine formaldehyde (MF) resin was prepared and used for the hydrogenation of adiponitrile (ADN) to hexamethylene diamine (HDMA). The carbon layer obtained from the MF resin effectively prevents the interaction between barium (Ba) and the active center, thus improving target product selectivity without decreasing catalytic activity. The results of the density functional theory (DFT) calculation and characterization indicated that the effect of synergy between nickel (Ni) and cobalt (Co) bimetals induces an electron density growth on the Ni surface, bringing the d-band center toward the Fermi surface. Meanwhile, the high electron density of the active center compensates for the electron-deficient state of the carbon atom in -CN, thus improving the catalytic activity. Furthermore, it was found that the introduction of Ba promotes the formation of nucleophilic hydrogen anions, which facilitates the hydrogenation of 6-aminohexylimine (AHIM) to HDMA and inhibits the intramolecular condensation of AHIM, hence improving the selectivity to HDMA. The NiCo-NC@BaO-MFC catalyst gives 98.6 % ADN conversion and 97.2 % selectivity to HDMA in an alkali-free system.

18.
J Hazard Mater ; 471: 134457, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688224

RESUMO

Few reports have focused on using particle electrodes with polar adsorbent properties in heterogeneous electro-Fenton (EF) system to improve the degradation of hydrophilic organic pollutants (HLOPs). In this study, a hydrophilic electrode Sn-Sb/AS was prepared by supporting metals Sn and Sb on alum sludge (AS), which can effectively degrade 91.68%, 92.54%, 89.62%, and 96.24% of the four types of HLOPs, chlorpyrifos (CPF), atrazine (ATZ), diuron (DIU), and glyphosate (PMG), respectively, within 40 min. The mineralization rates were 82.37%, 78.93%, 73.98%, and 85.65% for CPF, ATZ, DIU, and PMG, respectively. Based on the analysis of Electron Paramagnetic Resonance test, quenching test, and identified anthracene endoperoxide, the degradation at the cathode was attributed to non-radical oxidation via interaction with 1O2. In contrast, the anodic oxidation occurred via direct electron transfer at the anode and/or oxidation via interaction with adsorbed •OH (•OHads) around the particle electrodes. Furthermore, the reaction sites were calculated by Density functional theory (DFT) and Fukui function, corresponding to the electrophilic attack (fA-) of 1O2 and anodic direct oxidation, besides, the radical attack (fA0) of •OH(ads). Herein, this study proposes a targeted elimination strategy for HLOPs in wastewater treatment using particle electrodes with polar adsorbent properties in EF system.

19.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642759

RESUMO

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Assuntos
Carvão Vegetal , Compostagem , Substâncias Húmicas , Nitrogênio , Fósforo , Fósforo/análise , Carvão Vegetal/química , Nitrogênio/análise , Compostagem/métodos , Microbiologia do Solo , Medicamentos de Ervas Chinesas/química , Solo/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-38670484

RESUMO

OBJECTIVE: Although low-dose computed tomography has been proven effective to reduce lung cancer-specific mortality, a considerable proportion of surgically resected high-risk lung nodules were still confirmed pathologically benign. There is an unmet need of a novel method for malignancy classification in lung nodules. METHODS: We recruited 307 patients with high-risk lung nodules who underwent curative surgery, and 247 and 60 cases were pathologically confirmed malignant and benign lung lesions, respectively. Plasma samples from each patient were collected before surgery and performed low-depth (5×) whole-genome sequencing. We extracted cell-free DNA characteristics and determined radiomic features. We built models to classify the malignancy using our data and further validated models with 2 independent lung nodule cohorts. RESULTS: Our models using one type of profile were able to distinguish lung cancer and benign lung nodules at an area under the curve metrics of 0.69 to 0.91 in the study cohort. Integrating all the 5 base models using cell-free DNA profiles, the cell-free DNA-based ensemble model achieved an area under the curve of 0.95 (95% CI, 0.92-0.97) in the study cohort and 0.98 (95% CI, 0.96-1.00) in the validation cohort. At a specificity of 95.0%, the sensitivity reached 80.0% in the study cohort. With the same threshold, the specificity and sensitivity had similar performances in both validation cohorts. Furthermore, the performance of area under the curve reached 0.97 in both the study and validation cohorts when considering the radiomic profile. CONCLUSIONS: The cell-free DNA profiles-based method is an efficient noninvasive tool to distinguish malignancies and high-risk but pathologically benign lung nodules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...