Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(3): 4132-4143, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631929

RESUMO

Selective catalytic reduction with ammonia is the mainstream technology of flue gas denitration (de-NOx). The reducibility and acid site are two important factors affecting the de-NOx performance, and effective regulation between them is the key to obtain a highly efficient de-NOx catalyst. Herein, a series of Mn-Fe-BTC with different ratios of Mn and Fe are synthesized, among which 2Mn-1Fe-BTC with 2:1 molar ratio of Mn and Fe has excellent low-temperature (LT) de-NOx performance (above 90% NO conversion between 60 and 270 °C) and good tolerance to H2O and SO2 poisoning (88% NO conversion at 150 °C with 100 ppm of SO2 and/or 6% H2O). It is revealed that the reducibility properties and acid sites of Mn-Fe-BTC can be flexibly tuned by the ratio of Mn and Fe. The difference in electronegativity between Fe and Mn leads to the redistribution of valence electrons, which enables the controllable reducibility of Mn-Fe-BTC. Furthermore, different amounts of Mn and Fe lead to different electron transport, which determines the type and number of acid sites. The synergistic effect of Mn and Fe endows Mn-Fe-BTC with enhanced surface molecular adsorption capacity and enables the catalyst to selectively chemisorb NH3 and NO at different active sites. This research provides guidance for the flexible regulation of reducibility and acid site of LT de-NOx catalyst.

2.
ACS Appl Mater Interfaces ; 14(43): 48770-48779, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36259606

RESUMO

Herein, a new photocatalyst PdS@UiOS@CZS is successfully synthesized, where thiol-functionalized UiO-66 (UiOS), a metal-organic framework (MOF) material, is used as a host to encapsulate PdS quantum dots (QDs) in its cages, and Cd0.5Zn0.5S (CZS) solid solution nanoparticles (NPs) are anchored on its outer surface. The resultant PdS@UiOS@CZS with an optimal ratio between components displays an excellent photocatalytic H2 evolution rate of 46.1 mmol h-1 g-1 under visible light irradiation (420∼780 nm), which is 512.0, 9.2, and 5.9 times that of pure UiOS, CZS, and UiOS@CZS, respectively. The reason for the significantly enhanced performance is that the encapsulated PdS QDs strongly attract the photogenerated holes into the pores of UiOS, while the photogenerated electrons are effectively migrated to CZS due to the heterojunction effect, thereby effectively suppressing the recombination of charge carriers for further high-efficiency hydrogen production. This work provides an idea for developing efficient photocatalysts induced by hole attraction.

3.
J Colloid Interface Sci ; 625: 871-878, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35777094

RESUMO

The fast development of flexible devices has greatly boosted the demands for flexible lithium-ion batteries (LIBs). Accordingly, a broad exploration of flexible electrodes in LIBs is crucial. At present, the major challenge in the flexible electrode for lithium-ion batteries (LIBs) is how to achieve an excellent electrochemical performance (particularly high-energy density) while maintaining superior mechanical flexibility. Herein, flexible silicon/carbon nanotube (Si/CNT) electrode is prepared via a common blade-coating, which is adoptable to large-scale production. The CNT network from monodispersed CNT solution endows the electrode with superior tensile strength and mechanical toughness. The tensile strength of the flexible electrodes is up to 3.75 MPa, and the corresponding strain at break is 43.9%. The flexible electrode delivers an areal capacity of 10.6 mAh cm-2 at 0.06 mA cm-2, which is completely meet the practical requirement (1-3 mAh cm-2). And a high reversible capacity of 5.64 mAh cm-2 can be retained at 0.3 mA cm-2 after 200 cycles. In addition, the pouch cell exhibits a promising cycling stability under the repeated deformation state. Moreover, this work also provides a feasible and scalable method to fabricate flexible electrodes for other wearable energy storage systems.

4.
J Colloid Interface Sci ; 549: 179-188, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31035132

RESUMO

A series of dandelion-like Fe-CeO2/CdS (FeCex/Cdy) nanoflowers with different molar ratios of Fe-CeO2 to CdS are synthesized by solvothermal method for the first time. The FeCex/Cdy nanoflowers are assembled by a large number of nanoparticles with the diameter of about 3 nm, and the introduction of Fe ions and the couple of CdS quantum dots (QDs) efficiently enhanced the relative percentage of Ce3+ in CeO2. The as-obtained FeCe1/Cd1 heterostructure exhibits the highest photocatalytic H2 evolution ability of 108.9 µmol/h, which is 20.5, 6.1 and 7.1 times higher than CeO2, Fe-CeO2 and CdS, respectively. This significantly enhanced photocatalytic performance can be mainly attributed to the synergy between the electronic anchoring effect of Fe3+/Fe2+ and Ce4+/Ce3+ redox couples and the internal electric field constructed by the II-type heterojunction between Fe-CeO2 and CdS. This work provides a new idea for the design of efficient photocatalysts by combining the advantages of heterostructure and ion anchoring effect.

5.
Theranostics ; 7(4): 1036-1046, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382174

RESUMO

Cysteine is an essential amino acid for infants, aged people as well as patients with metabolic disorders. Although the thiol group of cysteine side chain is active in oxidative reactions, the role of cysteine in cancer remains largely unknown. Here, we report that the expression level of the solute carrier family 3, member 1 (SLC3A1), the cysteine carrier, tightly correlated with clinical stages and patients' survival. Elevated SLC3A1 expression accelerated the cysteine uptake and the accumulation of reductive glutathione (GSH), leading to reduced reactive oxygen species (ROS). ROS increased the stability and activity of PP2Ac, resulting in decreased AKT activity. Hence, SLC3A1 activated the AKT signaling through inhibiting PP2A phosphatase activity. Consistently, overexpression of SLC3A1 enhanced tumorigenesis of breast cancer cells, whereas blocking SLC3A1 either with specific siRNA or SLC3A1 specific inhibitor sulfasalazine suppressed tumor growth and also abolished dietary NAC-promoted tumor growth. Collectively, our data demonstrate that SLC3A1 promotes cysteine uptake and determines cellular response to antioxidant N-acetylcysteine, suggesting SLC3A1 is a potential therapeutic target for breast cancer.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Neoplasias da Mama/fisiopatologia , Carcinogênese , Cisteína/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Células HEK293 , Xenoenxertos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Análise de Sobrevida
6.
PLoS One ; 10(3): e0117837, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756780

RESUMO

Attention is important in error processing. Few studies have examined the link between sustained attention and error processing. In this study, we examined how error-related negativity (ERN) of a four-choice reaction time task was reduced in the mental fatigue condition and investigated the role of sustained attention in error processing. Forty-one recruited participants were divided into two groups. In the fatigue experiment group, 20 subjects performed a fatigue experiment and an additional continuous psychomotor vigilance test (PVT) for 1 h. In the normal experiment group, 21 subjects only performed the normal experimental procedures without the PVT test. Fatigue and sustained attention states were assessed with a questionnaire. Event-related potential results showed that ERN (p < 0.005) and peak (p < 0.05) mean amplitudes decreased in the fatigue experiment. ERN amplitudes were significantly associated with the attention and fatigue states in electrodes Fz, FC1, Cz, and FC2. These findings indicated that sustained attention was related to error processing and that decreased attention is likely the cause of error processing impairment.


Assuntos
Atenção/fisiologia , Comportamento de Escolha/fisiologia , Fadiga Mental/fisiopatologia , Fadiga Mental/psicologia , Adulto , Humanos , Masculino , Testes Neuropsicológicos , Desempenho Psicomotor/fisiologia , Tempo de Reação , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...