Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0263061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35192627

RESUMO

Cold-water coral (CWC) reefs are numerous and widespread along the Norwegian continental shelf where oil and gas industry operate. Uncertainties exist regarding their impacts from operational discharges to drilling. Effect thresholds obtained from near-realistic exposure of suspended particle concentrations for use in coral risk modeling are particularly needed. Here, nubbins of Desmophyllum pertusum (Lophelia pertusa) were exposed shortly (5 days, 4h repeated pulses) to suspended particles (bentonite BE; barite BA, and drill cuttings DC) in the range of ~ 4 to ~ 60 mg.l-1 (actual concentration). Physiological responses (respiration rate, growth rate, mucus-related particulate organic carbon OC and particulate organic nitrogen ON) and polyp mortality were then measured 2 and 6 weeks post-exposure to assess long-term effects. Respiration and growth rates were not significantly different in any of the treatments tested compared to control. OC production was not affected in any treatment, but a significant increase of OC:ON in mucus produced by BE-exposed (23 and 48 mg.l-1) corals was revealed 2 weeks after exposure. Polyp mortality increased significantly at the two highest DC doses (19 and 49 mg.l-1) 2 and 6 weeks post-exposure but no significant difference was observed in any of the other treatments compared to the control. These findings are adding new knowledge on coral resilience to short realistic exposure of suspended drill particles and indicate overall a risk for long-term effects at a threshold of ~20 mg.l-1.


Assuntos
Adaptação Fisiológica , Antozoários/efeitos dos fármacos , Sulfato de Bário/farmacologia , Bentonita/farmacologia , Material Particulado/farmacologia , Taxa Respiratória/efeitos dos fármacos , Animais , Antozoários/crescimento & desenvolvimento , Carbono/química , Carbono/metabolismo , Recifes de Corais , Indústrias Extrativas e de Processamento/métodos , Humanos , Longevidade/efeitos dos fármacos , Nitrogênio/química , Nitrogênio/metabolismo , Noruega , Taxa Respiratória/fisiologia , Água/química
2.
Ecotoxicol Environ Saf ; 228: 113013, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34839140

RESUMO

Oil spill clean-up measures using in situ burning can potentially result in seafloor contamination affecting benthic organisms. To mimic realistic exposure and measure effects, ovigerous Northern shrimp were continuously exposed for two weeks to the water-soluble fraction of oil coated on gravel followed by two weeks in clean seawater. North Sea crude oil (NSC) and field generated in situ burn residue (ISBR) of NSC were used (Low: 3 g/kg gravel, Medium: 6 g/kg gravel and High: 12 g/kg gravel). The concentrations of polyaromatic hydrocarbons (PAHs) in the water resulting from NSC were higher compared to ISBR. No mortality was observed in any treatment and overall moderate sublethal effects were found, mostly after exposure to NSC. Feeding was temporarily reduced at higher concentrations of NSC. PAH levels in hepatopancreas tissue were significantly elevated following exposure and still significantly higher at the end of the experiment in NSCHigh and ISBRHigh compared to control. Mild inflammatory response reactions and tissue ultrastructural alterations in gill tissue were observed in both treatments. Signs of necrosis occurred in ISBRHigh. No change in shrimp locomotory activity was noted from NSC exposure. However, ISBR exposure increased activity temporarily. Larvae exposed as pleopod-attached embryos showed significant delay in development from stage I to stage II after exposure to NSCHigh. Based on this study, oil-contaminated seafloor resulting from in situ burning clean-up actions does not appear to cause serious effects on bottom-living shrimp.

3.
Mar Environ Res ; 168: 105314, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33839401

RESUMO

In situ burning (ISB) is an oil spill clean-up option used by oil spill responders to mitigate impacts on the marine environment. Despite advantages such as high efficiency and potential applicability for challenging areas such as the Arctic, the actual environmental side effects are still uncertain. Acute and sublethal effects of the water accommodated fractions (WAFs from 25 g oil/L seawater) of a pre-weathered North Sea crude (Oseberg Blend 200 °C+) and field generated ISB residue were evaluated on Northern shrimp (Pandalus borealis) larvae. The larvae were first exposed for 96 h to a serial dilution of seven concentrations, and then maintained for two weeks in clean seawater post-exposure. No acute (mortality) or sublethal effects (feeding, development, or growth) were detected in any of the ISB residue concentrations. Significant larvae mortality was found in the three highest concentrations of crude oil (96-h LC50:469 µg/L total petroleum hydrocarbon) but no sublethal effects were found in the surviving larvae post-exposure. This study indicates that applying ISB could mitigate acute impacts of spilled oil on shrimp larvae.


Assuntos
Pandalidae , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Larva , Mar do Norte , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Aquat Toxicol ; 222: 105453, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32112997

RESUMO

Anti-parasitic drugs used in the aquaculture industry are discharged to the sea after treatment of salmon. In this study, the effects of azamethiphos (AZA) in the Salmosan® formulation and deltamethrin (DEL) in the Alpha Max® formulation, have been assessed in Northern shrimp larvae (Pandalus borealis) when administered both separately and in combination. The exposure concentrations were 100 ng/L for AZA and 2 ng/L for DEL, each representing a 1000-fold dilution of the prescribed concentrations for salmon. These two chemicals were combined at these concentrations to give a third treatment (AZA + DEL). When larvae were exposed for two hours on the first, second and third days post hatch (dph), significantly increased mortality and reduced swimming activity were observed for larvae from the DEL and combined AZA + DEL treatments 4 dph, though not in larvae from the AZA treatment. A single pulse exposure, delivered on the first day post hatch, caused similar effects on mortality and swimming activity 4 dph as the three-pulse exposure. Mortality was driven by the presence of DEL in both experiments, with no amplification or reduction of effects observed when DEL and AZA were combined. Larvae were observed for 13 days following the single pulse exposure, with food limitation introduced as an additional stressor on day 4. In the DEL and AZA + DEL treatments mortality continued to increase regardless of food level, with no larvae completing development to stage II. The overriding toxicity of DEL masked any potential effects the reduced food ration may have exerted. Swimming activity was lower for AZA treated larvae than Control larvae 13 dph, when both groups were fed daily, though no other significant changes to mortality, development to stage II, feeding rate or gene expression were observed. Food limited Control and AZA larvae had lower swimming activity and feeding rate than daily fed Control larvae, with expression of pyruvate kinase and myosin genes also downregulated. However, there was no negative effect on survival or successful development to stage II in these treatments. In addition, mesencephalic astrocyte-derived neurotropic factor was downregulated in food limited Control larvae when compared with the daily fed Controls. Results from this study together with reported estimates of dispersion plume concentrations of discharged pesticides indicate that toxic concentrations of deltamethrin could reach shrimp larvae several kilometers from a treated salmon farm.


Assuntos
Ração Animal , Aquicultura/métodos , Larva/efeitos dos fármacos , Pandalidae/efeitos dos fármacos , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Nitrilas/toxicidade , Organotiofosfatos/toxicidade , Piretrinas/toxicidade , Salmão/crescimento & desenvolvimento
5.
Mar Pollut Bull ; 151: 110892, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056658

RESUMO

The application of chemical dispersants is one option of oil spill response (OSR). Here, Northern shrimp (Pandalus borealis) larvae were experimentally exposed for short periods (6 h and 1 h) to a realistic concentration of chemically dispersed oil (CDO) (~10 mg L-1 THC), mechanically dispersed oil (MDO) (~7 mg L-1 THC), and dispersant only (D). A control (C) with seawater served as reference. Short-term effects on survival and feeding were examined right after exposure and longer-term consequences on survival, feeding, growth and development following 30 days of recovery. Both exposure durations provoked long lasting effects on larval fitness, with 1 h exposure leading to minor effects on most of the selected endpoints. The 6 h exposure affected all endpoints with more adverse impacts after exposure to CDO. This study provides important data for assessing the best OSR option relevant to NEBA (Net Environmental Benefit Analysis).


Assuntos
Pandalidae , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Larva
6.
Ecotoxicol Environ Saf ; 180: 473-482, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31121554

RESUMO

Hydrogen peroxide (H2O2) is used as anti-parasitic veterinary medicine in salmon farms worldwide. In the period from 2009 to 2018 a total of 135 million kg of H2O2 was used in Norway, the world's largest producer of Atlantic salmon. Since the treatment water is discharged to the sea, concerns have been raised about effects of H2O2 on the coastal ecosystem. In the present study, Northern shrimp (Pandalus borealis) have been exposed to short pulses of H2O2 in the PARAMOVE® formulation, followed by a recovery period in clean seawater. The exposure concentrations represented 100, 1000 and 10 000 times dilutions of the prescribed treatment concentration for salmon; 15 mg/L, 1.5 mg/L and 0.15 mg/L H2O2. Significantly increased mortality was observed after 2 h exposure to 15 mg/L H2O2 (50%) and after 2 h exposure to 1.5 mg/L H2O2 on 3 consecutive days (33%), but no mortality was observed after 2 h exposure to 0.15 mg/L. The mortality occurred 2-4 days after the first pulse of exposure. The patterns of acute effects (immobility and death) could be captured with a toxicokinetic-toxicodynamic model (GUTS), which allows extrapolations to LC50s for constant exposure, or thresholds for effects given untested exposure profiles. Effects of H2O2 were also detected in shrimp that survived until the end of the recovery period. The feeding rate was 66% lower than in the control after 12 days of recovery for the three-pulse 1.5 mg/L exposure. Furthermore, dose dependent tissue damage was detected in the gills and evidence of lipid peroxidation in the hepatopancreas in shrimp exposed for 1 h to 1.5 mg/L and 15 mg/L and kept in recovery for 8 days. Fluorescence intensity in the hepatopancreas of treated shrimp increased 47% and 157% at 1.5 mg/L and 15 mg/L, respectively, compared to the control. Local hydrodynamic conditions will determine how fast the concentration of H2O2 will be diluted and how far it will be transported horizontally and vertically. Results from dispersion modelling (literature data) together with the current experiments indicate that treatment water with toxic concentrations of H2O2 (1.5 mg/L) could reach P. borealis living more than 1 km from a treated salmon farm.


Assuntos
Antiparasitários/toxicidade , Brânquias/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Pandalidae/efeitos dos fármacos , Drogas Veterinárias/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Ecossistema , Hepatopâncreas/efeitos dos fármacos , Dose Letal Mediana , Modelos Biológicos , Noruega , Água do Mar/química , Análise de Sobrevida , Fatores de Tempo
7.
Aquat Toxicol ; 198: 82-91, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524742

RESUMO

Increasing use of fish feed containing the chitin synthesis inhibiting anti-parasitic drug diflubenzuron (DFB) in salmon aquaculture has raised concerns over its impact on coastal ecosystems. Larvae of Northern shrimp (Pandalus borealis) were exposed to DFB medicated feed under Control conditions (7.0 °C, pH 8.0) and under Ocean Acidification and Warming conditions (OAW, 9.5 °C and pH 7.6). Two weeks' exposure to DFB medicated feed caused significantly increased mortality. The effect of OAW and DFB on mortality of shrimp larvae was additive; 10% mortality in Control, 35% in OAW, 66% in DFB and 92% in OAW + DFB. In OAW + DFB feeding and swimming activity were reduced for stage II larvae and none of the surviving larvae developed to stage IV. Two genes involved in feeding (GAPDH and PRLP) and one gene involved in moulting (DD9B) were significantly downregulated in larvae exposed to OAW + DFB relative to the Control. Due to a shorter intermoult period under OAW conditions, the OAW + DFB larvae were exposed throughout two instead of one critical pre-moult period. This may explain the more serious sub-lethal effects for OAW + DFB than DFB larvae. A single day exposure at 4 days after hatching did not affect DFB larvae, but high mortality was observed for OAW + DFB larvae, possibly because they were exposed closer to moulting. High mortality of shrimp larvae exposed to DFB medicated feed, indicates that the use of DFB in salmon aquaculture is a threat to crustacean zooplankton.


Assuntos
Ração Animal , Diflubenzuron/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Pandalidae/efeitos dos fármacos , Pandalidae/crescimento & desenvolvimento , Parasitos/efeitos dos fármacos , Animais , Ecossistema , Comportamento Alimentar/efeitos dos fármacos , Peixes , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Muda/efeitos dos fármacos , Pandalidae/genética , Reação em Cadeia da Polimerase em Tempo Real , Respiração , Análise de Sobrevida , Natação , Transcriptoma/genética , Poluentes Químicos da Água/toxicidade
8.
J Toxicol Environ Health A ; 80(16-18): 941-953, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28876214

RESUMO

Use of the chitin synthesis inhibitor diflubenzuron (DFB) as an antiparasitic drug in salmon aquaculture raises concern over its impact on marine ecosystems. Further, global drivers, such as ocean warming and acidification (OAW), may increase the toxicity of hazardous substances including DFB. The aim of the present study was to examine the combined effects of DFB-medicated salmon feed on ovigerous Northern shrimp (Pandalus borealis) under Control (pHNBS 8.0, 7.0ºC) and OAW conditions (pHNBS 7.6, 9.5ºC). DFB-exposed shrimp consumed on average 0.1-0.3 g medicated feed during the 2-week exposure period, and high mortality (61-73%) was documented at both environmental conditions. There was no significant interaction between OAW and DFB. Only 2-7% of DFB-exposed shrimp molted successfully compared to 65% in Control and 63% in OAW. The shrimp molted earlier (shorter intermolt period) and exhibited higher feeding rate at OAW compared to Control conditions. An additional experiment, where female shrimp were exposed to DFB closer to molting, noted increased mortality after only 4 d exposure, and successful molting for some shrimp after 2 to 3 weeks of depuration. High mortality of shrimp exposed to DFB-medicated feed indicates that the use of this feed in aquaculture could affect local shrimp populations.


Assuntos
Antiparasitários/toxicidade , Diflubenzuron/toxicidade , Muda/efeitos dos fármacos , Pandalidae/efeitos dos fármacos , Ração Animal/análise , Animais , Dieta/veterinária , Relação Dose-Resposta a Droga , Feminino , Peixes , Pandalidae/crescimento & desenvolvimento
9.
Mar Environ Res ; 127: 11-23, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28041674

RESUMO

The aim of this paper is to bridge gaps between biomarker and whole organism responses related to oil based offshore discharges. These biomarker bridges will facilitate acceptance criteria for biomarker data linked to environmental risk assessment and translate biomarker results to higher order effects. Biomarker based species sensitivity distributions (SSDbiomarkers) have been constructed for relevant groups of biomarkers based on laboratory data from oil exposures. SSD curves express the fraction of species responding to different types of biomarkers. They have been connected to SSDs for whole organism responses (WORs) constructed in order to relate the SSDbiomarkers to animal fitness parameters that are commonly used in environmental risk assessment. The resulting SSD curves show that biomarkers and WORs can be linked through their potentially affected fraction of species (PAF) distributions, enhancing the capability to monitor field parameters with better correlation to impact and risk assessment criteria and providing improved chemical/biological integration.


Assuntos
Organismos Aquáticos/fisiologia , Biomarcadores , Monitoramento Ambiental/métodos , Poluição por Petróleo/estatística & dados numéricos , Petróleo/análise , Medição de Risco , Especificidade da Espécie
10.
Mar Environ Res ; 127: 1-10, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28038790

RESUMO

Offshore oil and gas activities are required not to cause adverse environmental effects, and risk based management has been established to meet environmental standards. In some risk assessment schemes, Risk Indicators (RIs) are parameters to monitor the development of risk affecting factors. RIs have not yet been established in the Environmental Risk Assessment procedures for management of oil based discharges offshore. This paper evaluates the usefulness of biomarkers as RIs, based on their properties, existing laboratory biomarker data and assessment methods. Data shows several correlations between oil concentrations and biomarker responses, and assessment principles exist that qualify biomarkers for integration into risk procedures. Different ways that these existing biomarkers and methods can be applied as RIs in a probabilistic risk assessment system when linked with whole organism responses are discussed. This can be a useful approach to integrate biomarkers into probabilistic risk assessment related to oil based discharges, representing a potential supplement to information that biomarkers already provide about environmental impact and risk related to these kind of discharges.


Assuntos
Biomarcadores , Monitoramento Ambiental/métodos , Poluição por Petróleo/análise , Poluição por Petróleo/estatística & dados numéricos , Medição de Risco/métodos , Fatores de Risco , Poluentes Químicos da Água/análise
11.
Mar Environ Res ; 125: 10-24, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28038348

RESUMO

The aim of this study was to determine a suitable set of biomarker based methods for environmental monitoring in sub-arctic and temperate offshore areas using scientific knowledge on the sensitivity of fish species to dispersed crude oil. Threshold values for environmental monitoring and risk assessment were obtained based on a quantitative comparison of biomarker responses. Turbot, halibut, salmon and sprat were exposed for up to 8 weeks to five different sub-lethal concentrations of dispersed crude oil. Biomarkers assessing PAH metabolites, oxidative stress, detoxification system I activity, genotoxicity, immunotoxicity, endocrine disruption, general cellular stress and histological changes were measured. Results showed that PAH metabolites, CYP1A/EROD, DNA adducts and histopathology rendered the most robust results across the different fish species, both in terms of sensitivity and dose-responsiveness. The reported results contributed to forming links between biomonitoring and risk assessment procedures by using biomarker species sensitivity distributions.


Assuntos
Monitoramento Ambiental/métodos , Peixes/fisiologia , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Regiões Árticas , Biomarcadores/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Linguados/metabolismo
12.
J Toxicol Environ Health A ; 79(13-15): 647-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27484144

RESUMO

For the environmental monitoring of coral, mucus appears to be an appropriate biological matrix due to its array of functions in coral biology and the non-intrusive manner in which it can be collected. The aim of the present study was to evaluate the feasibility of using mucus of the stony coral Lophelia pertusa (L. pertusa) as an analytical matrix for discovery of biomarkers used for environmental monitoring. More specifically, to assess whether a mass-spectrometry-based proteomic approach can be applied to characterize the protein composition of coral mucus and changes related to petroleum discharges at the seafloor. Surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS) screening analyses of orange and white L. pertusa showed that the mucosal protein composition varies significantly with color phenotype, a pattern not reported prior to this study. Hence, to reduce variability from phenotype difference, L. pertusa white individuals only were selected to characterize in more detail the basal protein composition in mucus using liquid chromatography, mass spectrometry, mass spectrometry (LC-MS/MS). In total, 297 proteins were identified in L. pertusa mucus of unexposed coral individuals. Individuals exposed to drill cuttings in the range 2 to 12 mg/L showed modifications in coral mucus protein composition compared to unexposed corals. Although the results were somewhat inconsistent between individuals and require further validation in both the lab and the field, this study demonstrated preliminary encouraging results for discovery of protein markers in coral mucus that might provide more comprehensive insight into potential consequences attributed to anthropogenic stressors and may be used in future monitoring of coral health.


Assuntos
Antozoários/efeitos dos fármacos , Monitoramento Ambiental/métodos , Petróleo/toxicidade , Proteoma/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Poluentes Químicos da Água/toxicidade , Animais , Antozoários/química , Muco/química , Muco/efeitos dos fármacos , Mar do Norte , Noruega
13.
Mar Environ Res ; 62 Suppl: S105-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16764920

RESUMO

The development of rapid and sensitive diagnostic tools to assess the effect of stressors on organisms is a principal objective of environmental proteomics. This study is focused on evaluating the potential of using surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF MS) to assess stress in Atlantic salmon (Salmo salar). Plasma and mucus samples were taken from fish that had previously been maintained in a range of high density conditions, together with control fish maintained under low density conditions. Samples were collected during the post-density stress period for protein profile analysis. The mass spectra were analysed to evaluate reproducibility and to search for condition specific changes in protein expression. Multivariate analysis of the peak relative intensity data indicated a segregation of the data into three entities in accordance with the density level fish had been subjected to during the density stress period. This segregation was seen in both plasma and mucus data.


Assuntos
Doenças dos Peixes/diagnóstico , Análise Serial de Proteínas/veterinária , Proteínas/análise , Salmo salar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , Estresse Fisiológico/veterinária , Animais , Biomarcadores/análise , Biomarcadores/sangue , Muco/química , Densidade Demográfica , Análise Serial de Proteínas/métodos , Análise Serial de Proteínas/normas , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas , Estresse Fisiológico/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA