Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38668464

RESUMO

When possible, choosing materials with a low quartz content is the most effective and cost-efficient way to prevent the respirable quartz exposure of workers and other end users of powdery products. Therefore, methods are needed to analyze low amounts of quartz from powdery products, such as sand, gravel, plaster, cement, and concrete. To this end, we present a method to analyze respirable dust and quartz from powdered materials, such as construction products. The method includes separation of the respirable dust fraction by liquid sedimentation, followed by gravimetric analysis and determination of the crystalline silica content by X-ray diffractometry. While also aiding in the development of less harmful products, analysis of the quartz concentration of powdery products is statutory in Eu countries, excluding natural products not chemically modified. According to EU Regulation No. 1272/2008, products must be classified if they contain harmful substances in concentrations above 0.1 wt.%, and clauses pertaining to cancerous properties and harmfulness to lungs should be included. Also, mineral producers in the EU recommend that products containing respirable quartz should be labelled based on their quartz concentration, provided the concentration exceeds 1 wt.%. The present method meets these needs. The analysis can be performed in parallel from 50 to 1000 mg (dry weight) of powdery materials. The quantitative limit of determination was 10 µg per sample, corresponding to 0.01 wt.%, and the linear range 0.02-10 wt.% (10-5000 µg quartz per sample, Pearson correlation coefficient 0.99). The accuracy of the method was 82% and the repeatability 11%.

2.
Nanotoxicology ; 6(6): 643-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21770722

RESUMO

The use of nanotechnology in different fields is increasing rapidly. Engineered nanoparticles (ENPs) may have adverse effect on human health, but little is known about the exposure levels of ENPs at occupational settings. In this study, exposure levels of cerium oxide (CeO(2)) ENPs were measured during enclosed flame spray process used for coating and surface modification of materials. Particle number concentration, mass concentration, and morphology and composition of the ENPs were studied. The average particle number concentration varied from 4.7·10(3) to 2.1·10(5) 1/cm(3) inside the enclosure, and from 4.6·10(3) to 1.4·10(4) 1/cm(3) outside the enclosure. The average mass concentrations inside and outside the enclosure were 320 and 66 µg/m(3), respectively. A batch-type process caused significant variation in the concentrations, especially inside the enclosure. CeO(2) ENPs were mainly chainlike aggregates, consisting of spherical 20-40 nm primary particles having crystalline structure. In conclusion, enclosure of the process with efficient ventilation seemed to be an effective means to reduce the exposure to CeO(2) ENPs as expected.


Assuntos
Cério/análise , Nanopartículas Metálicas/análise , Nanotecnologia/métodos , Exposição Ocupacional/análise , Aerossóis , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...