Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
NPJ Biodivers ; 3(1): 5, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242728

RESUMO

Opportunistic plant records provide a rapidly growing source of spatiotemporal plant observation data. Here, we used such data to explore the question whether they can be used to detect changes in species phenologies. Examining 19 herbaceous and one woody plant species in two consecutive years across Europe, we observed significant shifts in their flowering phenology, being more pronounced for spring-flowering species (6-17 days) compared to summer-flowering species (1-6 days). Moreover, we show that these data are suitable to model large-scale relationships such as "Hopkins' bioclimatic law" which quantifies the phenological delay with increasing elevation, latitude, and longitude. Here, we observe spatial shifts, ranging from -5 to 50 days per 1000 m elevation to latitudinal shifts ranging from -1 to 4 days per degree northwards, and longitudinal shifts ranging from -1 to 1 day per degree eastwards, depending on the species. Our findings show that the increasing volume of purely opportunistic plant observation data already provides reliable phenological information, and therewith can be used to support global, high-resolution phenology monitoring in the face of ongoing climate change.

2.
Syst Biol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046773

RESUMO

Reconstructing the tree of life and understanding the relationships of taxa are core questions in evolutionary and systematic biology. The main advances in this field in the last decades were derived from molecular phylogenetics; however, for most species, molecular data are not available. Here, we explore the applicability of two deep learning methods - supervised classification approaches and unsupervised similarity learning - to infer organism relationships from specimen images. As a basis, we assembled an image dataset covering 4144 bivalve species belonging to 74 families across all orders and subclasses of the extant Bivalvia, with molecular phylogenetic data being available for all families and a complete taxonomic hierarchy for all species. The suitability of this dataset for deep learning experiments was evidenced by an ablation study resulting in almost 80% accuracy for identifications on the species level. Three sets of experiments were performed using our dataset. First, we included taxonomic hierarchy and genetic distances in a supervised learning approach to obtain predictions on several taxonomic levels simultaneously. Here, we stimulated the model to consider features shared between closely related taxa to be more critical for their classification than features shared with distantly related taxa, imprinting phylogenetic and taxonomic affinities into the architecture and training procedure. Second, we used transfer learning and similarity learning approaches for zero-shot experiments to identify the higher-level taxonomic affinities of test species that the models had not been trained on. The models assigned the unknown species to their respective genera with approximately 48% and 67% accuracy. Lastly, we used unsupervised similarity learning to infer the relatedness of the images without prior knowledge of their taxonomic or phylogenetic affinities. The results clearly showed similarities between visual appearance and genetic relationships at the higher taxonomic levels. The correlation was 0.6 for the most species-rich subclass (Imparidentia), ranging from 0.5 to 0.7 for the orders with the most images. Overall, the correlation between visual similarity and genetic distances at the family level was 0.78. However, fine-grained reconstructions based on these observed correlations, such as sister-taxa relationships, require further work. Overall, our results broaden the applicability of automated taxon identification systems and provide a new avenue for estimating phylogenetic relationships from specimen images.

3.
Trends Ecol Evol ; 39(8): 771-784, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849221

RESUMO

Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.


Assuntos
Inteligência Artificial , Classificação , Classificação/métodos , Biodiversidade , Genômica
4.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696364

RESUMO

Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.


Assuntos
Modelos Biológicos , Árvores , Árvores/crescimento & desenvolvimento , Árvores/anatomia & histologia , Xilema/crescimento & desenvolvimento , Xilema/anatomia & histologia , Quercus/crescimento & desenvolvimento , Quercus/anatomia & histologia , Quercus/fisiologia , Picea/crescimento & desenvolvimento , Picea/anatomia & histologia , Picea/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Pinus/crescimento & desenvolvimento , Pinus/anatomia & histologia , Simulação por Computador
5.
Sci Rep ; 14(1): 6141, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480781

RESUMO

Evolving software is a highly complex and creative problem in which a number of different strategies are used to solve the tasks at hand. These strategies and reoccurring coding patterns can offer insights into the process. However, they can be highly project or even task-specific. We aim to identify code change patterns in order to draw conclusions about the software development process. For this, we propose a novel way to calculate high-level file overarching diffs, and a novel way to parallelize pattern mining. In a study of 1000 Java projects, we mined and analyzed a total of 45,000 patterns. We present 13 patterns, showing extreme points of the 7 pattern categories we identified. We found that a large number of high-level change patterns exist and occur frequently. The majority of mined patterns were associated with a specific project and contributor, where and by whom it was more likely to be used. While a large number of different code change patterns are used, only a few, mostly unsurprising ones, are common under all circumstances. The majority of code change patterns are highly specific to different context factors that we further explore.

6.
Trop Med Infect Dis ; 8(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133449

RESUMO

The metacestode stage of the fox tapeworm Echinococcus multilocularis causes the severe zoonotic disease alveolar echinococcosis. New treatment options are urgently needed. Disulfiram and dithiocarbamates were previously shown to exhibit activity against the trematode Schistosoma mansoni. As both parasites belong to the platyhelminths, here we investigated whether these compounds were also active against E. multilocularis metacestode vesicles in vitro. We used an in vitro drug-screening cascade for the identification of novel compounds against E. multilocularis metacestode vesicles with disulfiram and 51 dithiocarbamates. Five compounds showed activity against E. multilocularis metacestode vesicles after five days of drug incubation in a damage marker release assay. Structure-activity relationship analyses revealed that a S-2-hydroxy-5-nitro benzyl moiety was necessary for anti-echinococcal activity, as derivatives without this group had no effect on E. multilocularis metacestode vesicles. The five active compounds were further tested for potential cytotoxicity in mammalian cells. For two compounds with low toxicity (Schl-32.315 and Schl-33.652), IC50 values in metacestode vesicles and IC50 values in germinal layer cells were calculated. The compounds were not highly active on isolated GL cells with IC50 values of 27.0 ± 4.2 µM for Schl-32.315 and 24.7 ± 11.5 µM for Schl-33.652, respectively. Against metacestode vesicles, Schl-32.315 was not very active either with an IC50 value of 41.6 ± 3.2 µM, while Schl-33.652 showed a low IC50 of 4.3 ± 1 µM and should be further investigated in the future for its activity against alveolar echinococcosis.

7.
Front Plant Sci ; 14: 1150956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860262

RESUMO

Plant phenology plays a vital role in assessing climate change. To monitor this, individual plants are traditionally visited and observed by trained volunteers organized in national or international networks - in Germany, for example, by the German Weather Service, DWD. However, their number of observers is continuously decreasing. In this study, we explore the feasibility of using opportunistically captured plant observations, collected via the plant identification app Flora Incognita to determine the onset of flowering and, based on that, create interpolation maps comparable to those of the DWD. Therefore, the opportunistic observations of 17 species collected in 2020 and 2021 were assigned to "Flora Incognita stations" based on location and altitude in order to mimic the network of stations forming the data basis for the interpolation conducted by the DWD. From the distribution of observations, the percentile representing onset of flowering date was calculated using a parametric bootstrapping approach and then interpolated following the same process as applied by the DWD. Our results show that for frequently observed, herbaceous and conspicuous species, the patterns of onset of flowering were similar and comparable between both data sources. We argue that a prominent flowering stage is crucial for accurately determining the onset of flowering from opportunistic plant observations, and we discuss additional factors, such as species distribution, location bias and societal events contributing to the differences among species and phenology data. In conclusion, our study demonstrates that the phenological monitoring of certain species can benefit from incorporating opportunistic plant observations. Furthermore, we highlight the potential to expand the taxonomic range of monitored species for phenological stage assessment through opportunistic plant observation data.

8.
Front Neuroinform ; 17: 1067095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911074

RESUMO

Analyzing time series data like EEG or MEG is challenging due to noisy, high-dimensional, and patient-specific signals. Deep learning methods have been demonstrated to be superior in analyzing time series data compared to shallow learning methods which utilize handcrafted and often subjective features. Especially, recurrent deep neural networks (RNN) are considered suitable to analyze such continuous data. However, previous studies show that they are computationally expensive and difficult to train. In contrast, feed-forward networks (FFN) have previously mostly been considered in combination with hand-crafted and problem-specific feature extractions, such as short time Fourier and discrete wavelet transform. A sought-after are easily applicable methods that efficiently analyze raw data to remove the need for problem-specific adaptations. In this work, we systematically compare RNN and FFN topologies as well as advanced architectural concepts on multiple datasets with the same data preprocessing pipeline. We examine the behavior of those approaches to provide an update and guideline for researchers who deal with automated analysis of EEG time series data. To ensure that the results are meaningful, it is important to compare the presented approaches while keeping the same experimental setup, which to our knowledge was never done before. This paper is a first step toward a fairer comparison of different methodologies with EEG time series data. Our results indicate that a recurrent LSTM architecture with attention performs best on less complex tasks, while the temporal convolutional network (TCN) outperforms all the recurrent architectures on the most complex dataset yielding a 8.61% accuracy improvement. In general, we found the attention mechanism to substantially improve classification results of RNNs. Toward a light-weight and online learning-ready approach, we found extreme learning machines (ELM) to yield comparable results for the less complex tasks.

9.
BMC Med Educ ; 23(1): 193, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978145

RESUMO

BACKGROUND: The Progress Test Medizin (PTM) is a 200-question formative test that is administered to approximately 11,000 students at medical universities (Germany, Austria, Switzerland) each term. Students receive feedback on their knowledge (development) mostly in comparison to their own cohort. In this study, we use the data of the PTM to find groups with similar response patterns. METHODS: We performed k-means clustering with a dataset of 5,444 students, selected cluster number k = 5, and answers as features. Subsequently, the data was passed to XGBoost with the cluster assignment as target enabling the identification of cluster-relevant questions for each cluster with SHAP. Clusters were examined by total scores, response patterns, and confidence level. Relevant questions were evaluated for difficulty index, discriminatory index, and competence levels. RESULTS: Three of the five clusters can be seen as "performance" clusters: cluster 0 (n = 761) consisted predominantly of students close to graduation. Relevant questions tend to be difficult, but students answered confidently and correctly. Students in cluster 1 (n = 1,357) were advanced, cluster 3 (n = 1,453) consisted mainly of beginners. Relevant questions for these clusters were rather easy. The number of guessed answers increased. There were two "drop-out" clusters: students in cluster 2 (n = 384) dropped out of the test about halfway through after initially performing well; cluster 4 (n = 1,489) included students from the first semesters as well as "non-serious" students both with mostly incorrect guesses or no answers. CONCLUSION: Clusters placed performance in the context of participating universities. Relevant questions served as good cluster separators and further supported our "performance" cluster groupings.


Assuntos
Estudantes de Medicina , Humanos , Retroalimentação , Processos Mentais , Análise por Conglomerados , Universidades
10.
Sci Data ; 10(1): 168, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973316

RESUMO

We present a multidisciplinary forest ecosystem 3D perception dataset. The dataset was collected in the Hainich-Dün region in central Germany, which includes two dedicated areas, which are part of the Biodiversity Exploratories - a long term research platform for comparative and experimental biodiversity and ecosystem research. The dataset combines several disciplines, including computer science and robotics, biology, bio-geochemistry, and forestry science. We present results for common 3D perception tasks, including classification, depth estimation, localization, and path planning. We combine the full suite of modern perception sensors, including high-resolution fisheye cameras, 3D dense LiDAR, differential GPS, and an inertial measurement unit, with ecological metadata of the area, including stand age, diameter, exact 3D position, and species. The dataset consists of three hand held measurement series taken from sensors mounted on a UAV during each of three seasons: winter, spring, and early summer. This enables new research opportunities and paves the way for testing forest environment 3D perception tasks and mission set automation for robotics.


Assuntos
Ecossistema , Florestas , Biodiversidade , Agricultura Florestal , Alemanha , Árvores
11.
Foods ; 11(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36553751

RESUMO

Globally, an unbalanced diet causes more deaths than any other factor. Due to a lack of knowledge, it is difficult for consumers to select healthy foods at the point of sale. Although different front-of-pack labeling schemes exist, their informative value is limited due to small sets of considered parameters and lacking information on ingredient composition. We developed and evalauated a manufacture-independent approach to quantify ingredient composition of 294 ready-to eat salads (distinguished into 73 subgroups) as test set. Nutritional quality was assessed by the nutriRECIPE-Index and compared to the Nutri-Score. The nutriRECIPE-Index comprises the calculation of energy-adjusted nutrient density of 16 desirable and three undesirable nutrients, which are weighted according to their degree of supply in the population. We show that the nutriRECIPE-Index has stronger discriminatory power compared to the Nutri-Score and discriminates as well or even better in 63 out of the 73 subgroups. This was evident in groups where seemingly similar products were compared, e.g., potato salads (Nutri-Score: C only, nutriRECIPE-Index: B, C and D). Moreover, the nutriRECIPE-Index is adjustable to any target population's specific needs and supply situation, such as seniors, and children. Hence, a more sophisticated distinction between single food products is possible using the nutriRECIPE-Index.

12.
Lab Chip ; 22(22): 4292-4305, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36196753

RESUMO

This work presents the application of droplet-based microfluidics for the cultivation of microspores from Brassica napus using the doubled haploid technology. Under stress conditions (e.g. heat shock) or by chemical induction a certain fraction of the microspores can be reprogrammed and androgenesis can be induced. This process is an important approach for plant breeding because desired plant properties can be anchored in the germline on a genetic level. However, the reprogramming rate of the microspores is generally very low, increasing it by specific stimulation is, therefore, both a necessary and challenging task. In order to accelerate the optimisation and development process, the application of droplet-based microfluidics can be a promising tool. Here, we used a tube-based microfluidic system for the generation and cultivation of microspores inside nL-droplets. Different factors like cell density, tube material and heat shock conditions were investigated to improve the yield of vital plant organoids. Evaluation and analysis of the stimuli response were done on an image base aided by an artificial intelligence cell detection algorithm. Droplet-based microfluidics allowed us to apply large concentration programs in small test volumes and to screen the best conditions for reprogramming cells by the histone deacetylase inhibitor trichostatin A and for enhancing the yield of vital microspores in droplets. An enhanced reprogramming rate was found under the heat shock conditions at 32 °C for about 3 to 6 days. In addition, the comparative experiment with MTP showed that droplet cultivation with lower cell density (<10 cells per droplet) or adding media after 3 or 6 days significantly positively affects the microspore growth and embryo rate inside 120 nL droplets. Finally, the developed embryos could be removed from the droplets and further grown into mature plants. Overall, we demonstrated that the droplet-based tube system is suitable for implementation in an automated, miniaturized system to achieve the induction of embryogenic development in haploid microspore stem cells of Brassica napus.


Assuntos
Brassica napus , Microfluídica , Haploidia , Pólen , Inteligência Artificial , Brassica napus/genética , Células-Tronco
13.
Eur J Med Chem ; 242: 114641, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027862

RESUMO

Schistosomiasis is a neglected tropical disease with more than 200 million new infections per year. It is caused by parasites of the genus Schistosoma and can lead to death if left untreated. Currently, only two drugs are available to combat schistosomiasis: praziquantel and, to a limited extent, oxamniquine. However, the intensive use of these two drugs leads to an increased probability of the emergence of resistance. Thus, the search for new active substances and their targeted development are mandatory. In this study the substance class of "dithiocarbamates" and their potential as antischistosomal agents is highlighted. These compounds are derived from the basic structure of the human aldehyde dehydrogenase inhibitor disulfiram (tetraethylthiuram disulfide, DSF) and its metabolites. Our compounds revealed promising activity (in vitro) against adults of Schistosoma mansoni, such as the reduction of egg production, pairing stability, vitality, and motility. Moreover, tegument damage as well as gut dilatations or even the death of the parasite were observed. We performed detailed structure-activity relationship studies on both sides of the dithiocarbamate core leading to a library of approximately 300 derivatives (116 derivatives shown here). Starting with 100 µm we improved antischistosomal activity down to 25 µm by substitution of the single bonded sulfur atom for example with different benzyl moieties and integration of the two residues on the nitrogen atom into a cyclic structure like piperazine. Its derivatization at the 4-nitrogen with a sulfonyl group or an acyl group led to the most active derivatives of this study which were active at 10 µm. In light of this SAR study, we identified 17 derivatives that significantly reduced motility and induced several other phenotypes at 25 µm, and importantly five of them have antischistosomal activity also at 10 µm. These derivatives were found to be non-cytotoxic in two human cell lines at 100 µm. Therefore, dithiocarbamates seem to be interesting new candidates for further antischistosomal drug development.


Assuntos
Esquistossomose , Esquistossomicidas , Adulto , Aldeído Desidrogenase/farmacologia , Animais , Dissulfiram/farmacologia , Humanos , Doenças Negligenciadas , Nitrogênio/farmacologia , Oxamniquine/química , Oxamniquine/farmacologia , Piperazinas/farmacologia , Praziquantel/farmacologia , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Esquistossomicidas/farmacologia , Enxofre/farmacologia
14.
Cytometry A ; 101(9): 782-799, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35670307

RESUMO

Environmental monitoring involves the quantification of microscopic cells and particles such as algae, plant cells, pollen, or fungal spores. Traditional methods using conventional microscopy require expert knowledge, are time-intensive and not well-suited for automated high throughput. Multispectral imaging flow cytometry (MIFC) allows measurement of up to 5000 particles per second from a fluid suspension and can simultaneously capture up to 12 images of every single particle for brightfield and different spectral ranges, with up to 60x magnification. The high throughput of MIFC has high potential for increasing the amount and accuracy of environmental monitoring, such as for plant-pollinator interactions, fossil samples, air, water or food quality that currently rely on manual microscopic methods. Automated recognition of particles and cells is also possible, when MIFC is combined with deep-learning computational techniques. Furthermore, various fluorescence dyes can be used to stain specific parts of the cell to highlight physiological and chemical features including: vitality of pollen or algae, allergen content of individual pollen, surface chemical composition (carbohydrate coating) of cells, DNA- or enzyme-activity staining. Here, we outline the great potential for MIFC in environmental research for a variety of research fields and focal organisms. In addition, we provide best practice recommendations.


Assuntos
Monitoramento Ambiental , Microscopia , Alérgenos , Citometria de Fluxo/métodos , Coloração e Rotulagem
15.
Data Brief ; 42: 108211, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35539028

RESUMO

Stakeholders of software development projects have various information needs for making rational decisions during their daily work. Satisfying these needs requires substantial knowledge of where and how the relevant information is stored and consumes valuable time that is often not available. Easing the need for this knowledge is an ideal text-to-SQL benchmark problem, a field where public datasets are scarce and needed. We propose the SEOSS-Queries dataset consisting of natural language utterances and accompanying SQL queries extracted from previous studies, software projects, issue tracking tools, and through expert surveys to cover a large variety of information need perspectives. Our dataset consists of 1,162 English utterances translating into 166 SQL queries; each query has four precise utterances and three more general ones. Furthermore, the dataset contains 393,086 labeled utterances extracted from issue tracker comments. We provide pre-trained SQLNet and RatSQL baseline models for benchmark comparisons, a replication package facilitating a seamless application, and discuss various other tasks that may be solved and evaluated using the dataset. The whole dataset with paraphrased natural language utterances and SQL queries is hosted at figshare.com/s/75ed49ef01ac2f83b3e2.

16.
Front Plant Sci ; 13: 805738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371160

RESUMO

Climate change represents one of the most critical threats to biodiversity with far-reaching consequences for species interactions, the functioning of ecosystems, or the assembly of biotic communities. Plant phenology research has gained increasing attention as the timing of periodic events in plants is strongly affected by seasonal and interannual climate variation. Recent technological development allowed us to gather invaluable data at a variety of spatial and ecological scales. The feasibility of phenological monitoring today and in the future depends heavily on developing tools capable of efficiently analyzing these enormous amounts of data. Deep Neural Networks learn representations from data with impressive accuracy and lead to significant breakthroughs in, e.g., image processing. This article is the first systematic literature review aiming to thoroughly analyze all primary studies on deep learning approaches in plant phenology research. In a multi-stage process, we selected 24 peer-reviewed studies published in the last five years (2016-2021). After carefully analyzing these studies, we describe the applied methods categorized according to the studied phenological stages, vegetation type, spatial scale, data acquisition- and deep learning methods. Furthermore, we identify and discuss research trends and highlight promising future directions. We present a systematic overview of previously applied methods on different tasks that can guide this emerging complex research field.

17.
IEEE Trans Neural Netw Learn Syst ; 33(7): 3094-3108, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33502984

RESUMO

Nature has always inspired the human spirit and scientists frequently developed new methods based on observations from nature. Recent advances in imaging and sensing technology allow fascinating insights into biological neural processes. With the objective of finding new strategies to enhance the learning capabilities of neural networks, we focus on a phenomenon that is closely related to learning tasks and neural stability in biological neural networks, called homeostatic plasticity. Among the theories that have been developed to describe homeostatic plasticity, synaptic scaling has been found to be the most mature and applicable. We systematically discuss previous studies on the synaptic scaling theory and how they could be applied to artificial neural networks. Therefore, we utilize information theory to analytically evaluate how mutual information is affected by synaptic scaling. Based on these analytic findings, we propose two flavors in which synaptic scaling can be applied in the training process of simple and complex, feedforward, and recurrent neural networks. We compare our approach with state-of-the-art regularization techniques on standard benchmarks. We found that the proposed method yields the lowest error in both regression and classification tasks compared to previous regularization approaches in our experiments across a wide range of network feedforward and recurrent topologies and data sets.


Assuntos
Aprendizagem , Redes Neurais de Computação , Humanos
18.
PLoS One ; 16(1): e0245230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434208

RESUMO

Humans' decision making process often relies on utilizing visual information from different views or perspectives. However, in machine-learning-based image classification we typically infer an object's class from just a single image showing an object. Especially for challenging classification problems, the visual information conveyed by a single image may be insufficient for an accurate decision. We propose a classification scheme that relies on fusing visual information captured through images depicting the same object from multiple perspectives. Convolutional neural networks are used to extract and encode visual features from the multiple views and we propose strategies for fusing these information. More specifically, we investigate the following three strategies: (1) fusing convolutional feature maps at differing network depths; (2) fusion of bottleneck latent representations prior to classification; and (3) score fusion. We systematically evaluate these strategies on three datasets from different domains. Our findings emphasize the benefit of integrating information fusion into the network rather than performing it by post-processing of classification scores. Furthermore, we demonstrate through a case study that already trained networks can be easily extended by the best fusion strategy, outperforming other approaches by large margin.


Assuntos
Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Plantas/classificação
19.
Front Plant Sci ; 12: 804140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154194

RESUMO

Poaceae represent one of the largest plant families in the world. Many species are of great economic importance as food and forage plants while others represent important weeds in agriculture. Although a large number of studies currently address the question of how plants can be best recognized on images, there is a lack of studies evaluating specific approaches for uniform species groups considered difficult to identify because they lack obvious visual characteristics. Poaceae represent an example of such a species group, especially when they are non-flowering. Here we present the results from an experiment to automatically identify Poaceae species based on images depicting six well-defined perspectives. One perspective shows the inflorescence while the others show vegetative parts of the plant such as the collar region with the ligule, adaxial and abaxial side of the leaf and culm nodes. For each species we collected 80 observations, each representing a series of six images taken with a smartphone camera. We extract feature representations from the images using five different convolutional neural networks (CNN) trained on objects from different domains and classify them using four state-of-the art classification algorithms. We combine these perspectives via score level fusion. In order to evaluate the potential of identifying non-flowering Poaceae we separately compared perspective combinations either comprising inflorescences or not. We find that for a fusion of all six perspectives, using the best combination of feature extraction CNN and classifier, an accuracy of 96.1% can be achieved. Without the inflorescence, the overall accuracy is still as high as 90.3%. In all but one case the perspective conveying the most information about the species (excluding inflorescence) is the ligule in frontal view. Our results show that even species considered very difficult to identify can achieve high accuracies in automatic identification as long as images depicting suitable perspectives are available. We suggest that our approach could be transferred to other difficult-to-distinguish species groups in order to identify the most relevant perspectives.

20.
New Phytol ; 229(1): 593-606, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32803754

RESUMO

Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best-performing classifier to yield a species-averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen.


Assuntos
Aprendizado Profundo , Citometria de Fluxo , Filogenia , Pólen , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...