Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Neoplasma ; 71(2): 180-192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38766853

RESUMO

It has been demonstrated that calreticulin (CALR) is expressed abnormally in various tumors and is involved in the occurrence and development of tumors. In this study, CALR and EIF2AK2 expression was measured in the clinical specimens of 39 patients with melanoma. Then, we constructed knockdown and overexpression cell models of CALR and EIF2AK2 and used wound healing and Transwell assays to observe cell migration and invasion. Apoptosis, EDU, and ROS assays were used to measure cell apoptosis and proliferation, as well as ROS levels. The effect of CALR on endoplasmic reticulum stress was detected using endoplasmic reticulum fluorescent probes. Western blotting was used to detect protein levels of CALR, EIF2AK2, ADAR1, and MMP14. The results indicated that CALR and EIF2AK2 expression levels were significantly higher in human melanoma tissues than in adjacent non-tumor tissue. In addition, we found a correlation between CALR and the expression of EIF2AK2 and MMP14, and the experimental results indicated that overexpression of CALR significantly upregulated the expression of EIF2AK2, MMP14, and ADAR1, while knockdown of CALR inhibited their expression. Notably, the knockdown of EIF2AK2 in the CALR overexpression group blocked the upregulation of MMP14 and ADAR1 expression by CALR, and the knockdown of both CALR and EIF2AK2 significantly inhibited MMP14 and ADAR1 expression. In conclusion, CALR and EIF2AK2 play a promoting role in melanoma progression, and knockdown of CALR and EIF2AK2 may be an effective anti-tumor target, and its mechanism may be through MMP14, ADAR1 signaling.


Assuntos
Adenosina Desaminase , Calreticulina , Proliferação de Células , Metaloproteinase 14 da Matriz , Melanoma , Proteínas de Ligação a RNA , Transdução de Sinais , eIF-2 Quinase , Humanos , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Calreticulina/genética , Calreticulina/metabolismo , Linhagem Celular Tumoral , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/genética , Movimento Celular , Apoptose , Estresse do Retículo Endoplasmático , Feminino , Progressão da Doença , Masculino , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade
2.
Small ; 18(4): e2104091, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766719

RESUMO

Incorporating boride nanocrystals could significantly impact the mechanical properties of aluminum alloys. Molten salts synthesis offers opportunities to fabricate superhard boride nanoparticles, which can sustain the harsh conditions during the liquid-phase design of metallic nanocomposites. Here hafnium diboride-aluminum nanocomposites are unveiled from molten salt-derived HfB2 nanoparticles sequentially dispersed in aluminum by ultrasound treatment. The structure and size of the nanocrystals are retained in the final nanocomposites, supporting their high chemical stability. Semicoherent interfaces between the nanoparticles and the matrix are then evidenced by TEM, suggesting that the nanocrystals could promote heterogeneous nucleation of Al and then limit the Al grain size to ≈20 µm. Nanoindentation measurements reveal significant grain boundary strengthening and grain refinement effects. It is finally shown that HfB2 nanoparticles also enable a decrease in matrix grain size and an increase in the hardness of the AlSi7 Cu0.5 Mg0.3 alloy. These proof-of-concept materials are paving the way to light-weight Al matrix nanocomposites doped by molten-salt synthesized nanoparticles.

3.
Nat Commun ; 10(1): 327, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659185

RESUMO

Octahedral molecular sieves (OMS) are built of transition metal-oxygen octahedra that delimit sub-nanoscale cavities. Compared to other microporous solids, OMS exhibit larger versatility in properties, provided by various redox states and magnetic behaviors of transition metals. Hence, OMS offer opportunities in electrochemical energy harnessing devices, including batteries, electrochemical capacitors and electrochromic systems, provided two conditions are met: fast exchange of ions in the micropores and stability upon exchange. Here we unveil a novel OMS hexagonal polymorph of tungsten oxide called h'-WO3, built of (WO6)6 tunnel cavities. h'-WO3 is prepared by a one-step soft chemistry aqueous route leading to the hydrogen bronze h'-H0.07WO3. Gentle heating results in h'-WO3 with framework retention. The material exhibits an unusual combination of 1-dimensional crystal structure and 2-dimensional nanostructure that enhances and fastens proton (de)insertion for stable electrochromic devices. This discovery paves the way to a new family of mixed valence functional materials with tunable behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...