RESUMO
As an oncogenic phosphatase, SHP2 acts as a converging node in the RTK-RAS-MAPK signaling pathway in cancer cells and suppresses antitumor immunity by passing signals downstream of PD-1. Here, we utilized the extra druggable pocket outside the previously identified SHP2 allosteric tunnel site by the (6,5 fused), 6 spirocyclic system. The optimized compound, JAB-3312, exhibited a SHP2 binding Kd of 0.37 nM, SHP2 enzymatic IC50 of 1.9 nM, KYSE-520 antiproliferative IC50 of 7.4 nM and p-ERK inhibitory IC50 of 0.23 nM. For JAB-3312, an oral dose of 1.0 mg/kg QD was sufficient to achieve 95% TGI in KYSE-520 xenograft model of mouse. JAB-3312 was well-tolerated in animal models, and a close correlation was observed between the plasma concentration of JAB-3312 and the p-ERK inhibition in tumors. Currently, JAB-3312 is undergoing clinical trials as a potential anticancer agent.
Assuntos
Antineoplásicos , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Humanos , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/síntese química , Camundongos , Regulação Alostérica/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Camundongos Nus , Feminino , Neoplasias/tratamento farmacológicoRESUMO
Glucagon-like peptide-1 (GLP-1) analogues have been commonly used as add-on medications for patients with Type 2 diabetes mellitus (T2DM). Currently, the development of long-acting GLP-1 analogues which allow the freedom and flexibility of once-weekly injections while maintaining their potency for a relatively long period has become the mainstream. Here, we successfully developed a long-acting human GLP-1(7-37) analogue (BPI-3016) with significantly extended half-life and increased resistance to dipeptidyl peptidase IV (DPP-IV) cleavage by structural modifications of human GLP-1. In vitro activity of BPI-3016 including GLP-1 receptor affinity and stimulation of cyclic adenosine monophosphate (cAMP) production was measured. In vivo activity of BPI-3016 such as its effects on glycemic control, ß-cell mass and body weight was evaluated in ob/ob mice, db/db mice, and spontaneous diabetic cynomolgus monkeys. The results indicated that BPI-3016 preserved receptor affinity to GLP receptors, and was capable of stimulating cAMP production. In in vivo pharmacokinetic study, the half-life of BPI-3016 was more than 95h after single dosing in diabetic cynomolgus monkeys. Also, BPI-3016 reduced fasting and post-prandial plasma glucose levels for up to a week after a single dose; It reduced body mass index (BMI), body fat, improved glucose tolerance and showed insulinotropic effects after once-weekly injection for 7 weeks. In conclusion, BPI-3016 retains the effects of GLP-1 with significantly prolonged half-life, making it a promising therapy for type 2 diabetes with once-weekly treatment in the clinic.