Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 5047, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871750

RESUMO

Direct solar-to-hydrogen conversion from pure water using all-organic heterogeneous catalysts remains elusive. The challenges are twofold: (i) full-band low-frequent photons in the solar spectrum cannot be harnessed into a unified S1 excited state for water-splitting based on the common Kasha-allowed S0 → S1 excitation; (ii) the H+ → H2 evolution suffers the high overpotential on pristine organic surfaces. Here, we report an organic molecular crystal nanobelt through the self-assembly of spin-one open-shell perylene diimide diradical anions (:PDI2-) and their tautomeric spin-zero closed-shell quinoid isomers (PDI2-). The self-assembled :PDI2-/PDI2- crystal nanobelt alters the spin-dependent excitation evolution, leading to spin-allowed S0S1 → 1(TT) → T1 + T1 singlet fission under visible-light (420 nm~700 nm) and a spin-forbidden S0 → T1 transition under near-infrared (700 nm~1100 nm) within spin-hybrid chromophores. With a triplet-triplet annihilation upconversion, a newly formed S1 excited state on the diradical-quinoid hybrid induces the H+ reduction through a favorable hydrophilic diradical-mediated electron transfer, which enables simultaneous H2 and O2 production from pure water with an average apparent quantum yield over 1.5% under the visible to near-infrared solar spectrum.

3.
Angew Chem Int Ed Engl ; : e202407502, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721850

RESUMO

Currently, much research effort has been devoted to improving the exciton utilization efficiency and narrowing the emission spectra of ultraviolet (UV) fluorophores for organic light-emitting diode (OLED) applications, while almost no attention has been paid to optimizing their light out-coupling efficiency. Here, we developed a linear donor-acceptor-donor (D-A-D) triad, namely CDFDB, which possesses high-lying reverse intersystem crossing (hRISC) property. Thanks to its integrated narrowband UV photoluminescence (PL) (λPL: 397 nm; FWHM: 48 nm), moderate PL quantum yield (ϕPL: 72 %, Tol), good triplet hot exciton (HE) conversion capability, and large horizontal dipole ratio (Θ//: 92 %), the OLEDs based on CDFDB not only can emit UV electroluminescence with relatively good color purity (λEL: 398 nm; CIEx,y: 0.161, 0.040), but also show a record maximum external quantum efficiency (EQEmax) of 12.0 %. This study highlights the important role of horizontal dipole orientation engineering in the molecular design of HE UV-OLED fluorophores.

4.
Angew Chem Int Ed Engl ; 63(29): e202405418, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686901

RESUMO

Purely organic molecules with room-temperature phosphorescence (RTP) are potential luminescent materials with high exciton utilization for organic light-emitting diodes (OLEDs), but those exhibiting superb electroluminescence (EL) performances are rarely explored, mainly due to their long phosphorescence lifetimes. Herein, a robust purely organic RTP molecule, 3,6-bis(5-phenylindolo[3,2-a]carbazol-12(5H)-yl)-xanthen-9-one (3,2-PIC-XT), is developed. The neat film of 3,2-PIC-XT shows strong green RTP with a very short lifetime (2.9 µs) and a high photoluminescence quantum yield (72 %), and behaviors balanced bipolar charge transport. The RTP nature of 3,2-PIC-XT is validated by steady-state and transient absorption and emission spectroscopies, and the working mechanism is deciphered by theoretical simulation. Non-doped multilayer OLEDs using thin neat films of 3,2-PIC-XT furnish an outstanding external quantum efficiency (EQE) of 24.91 % with an extremely low roll-off (1.6 %) at 1000 cd m-2. High-performance non-doped top-emitting and tandem OLEDs are also achieved, providing remarkable EQEs of 24.53 % and 42.50 %, respectively. Delightfully, non-doped simplified OLEDs employing thick neat films of 3,2-PIC-XT are also realized, furnishing an excellent EQE of 17.79 % and greatly enhanced operational lifetime. The temperature-dependent and transient EL spectroscopies demonstrate the electrophosphorescence attribute of 3,2-PIC-XT. These non-doped OLEDs are the best devices based on purely organic RTP materials reported so far.

5.
Nanoscale ; 16(11): 5786-5793, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38426276

RESUMO

Perovskite photodetectors (PPDs) offer a promising solution with low cost and high responsivity, addressing the limitations of traditional inorganic photodetectors. However, there is still room for improvement in terms of the dark current and stability of air-processed PPDs. In this study, 4,4',4''-tris(carbazol-9-yl)-triphenylamine (TCTA) was utilized as a nucleation agent to enhance the quality of perovskite films. The synergistic effect of TCTA and moisture promotes rapid nucleation of PbI2-PbCl2, resulting in an increased nucleation rate and the elimination of pinholes in the film. By employing additive engineering, we obtained a PbI2-PbCl2 layer with high coverage, leading to a low density of traps in the corresponding perovskite film. Consequently, the modified PPD exhibits a remarkable reduction in dark current density by over one order of magnitude, reaching 2.4 × 10-10 A cm-2 at -10 mV, along with a large linear dynamic range (LDR) of 183 dB. Furthermore, the resulting PPD demonstrates remarkable stability, retaining 90% of the initial external quantum efficiency (EQE) value even after continuous operation for over 3200 hours. Owing to a fast response time in the nanosecond range, the PPD could convert modulated light signals into electrical signals at a speed of 588 Kbit s-1, highlighting the great potential in the field of optical communication.

6.
Nat Commun ; 15(1): 979, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302484

RESUMO

Photocatalytic redox reactions are important for synthesizing fine chemicals from olefins, but the limited lifetime of radical cation intermediates severely restricts semiconductor photocatalysis efficiency. Here, we report that Ag3PO4 can efficiently catalyze intramolecular and intermolecular [2 + 2] and Diels-Alder cycloadditions under visible-light irradiation. The approach is additive-free, catalyst-recyclable. Mechanistic studies indicate that visible-light irradiation on Ag3PO4 generates holes with high oxidation power, which oxidize aromatic alkene adsorbates into radical cations. In photoreduced Ag3PO4, the conduction band electron (eCB-) has low reduction power due to the delocalization among the Ag+-lattices, while the particle surfaces have a strong electrostatic interaction with the radical cations, which considerably stabilize the radical cations against recombination with eCB-. The radical cation on the particle's surfaces has a lifetime of more than 2 ms, 75 times longer than homogeneous systems. Our findings highlight the effectiveness of inorganic semiconductors for challenging radical cation-mediated synthesis driven by sunlight.

7.
Adv Mater ; 36(16): e2313074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237120

RESUMO

Development of polymer donors with simple chemical structure and low cost is of great importance for commercial application of organic solar cells (OSCs). Here, side-chain random copolymer PMQ-Si605 with a simply 6,7-difluoro-3-methylquinoxaline-thiophene backbone and 5% siloxane decoration of side chain is synthesized in comparison with its alternating copolymer PTQ11. Relative to molecular weight (Mn) of 28.3 kg mol-1 for PTQ11, the random copolymer PMQ-Si605 with minor siloxane decoration is beneficial for achieving higher Mn up to 51.1 kg mol-1. In addition, PMQ-Si605 can show stronger aggregation ability and faster charge mobility as well as more efficient exciton dissociation in active layer as revealed by femtosecond transient absorption spectroscopy. With L8-BO-F as acceptor, its PMQ-Si605 based OSCs display power conversion efficiency (PCE) of 18.08%, much higher than 16.21% for PTQ11 based devices. With another acceptor BTP-H2 to optimize the photovoltaic performance of PMQ-Si605, further elevated PCEs of 18.50% and 19.15% can be achieved with the binary and ternary OSCs, respectively. Furthermore, PMQ-Si605 based active layers are suitable for processing in high humidity air, an important factor for massive production of OSCs. Therefore, the siloxane decoration on polymer donors is promising, affording PMQ-Si605 as a high-performing and low cost candidate.

8.
Chemistry ; 30(14): e202303990, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060300

RESUMO

Red luminescent materials are essential components for full color display and white lightening based on organic light-emitting diode (OLED) technology, but the extension of emission color towards red or deep red region generally leads to decreased photoluminescence and electroluminescence efficiencies. Herein, we wish to report two new luminescent molecules (2CNDPBPPr-TPA and 4CNDPBPPr-TPA) consisting of cyano-substituted 11,12-diphenyldipyrido[3,2-a:2',3'-c]phenazine acceptors and triphenylamine donors. As the increase of cyano substituents, the emission wavelength is greatly red-shifted and the reverse intersystem crossing process is promoted, resulting in strong red delayed fluorescence. Meanwhile, due to the formation of intramolecular hydrogen bonds, the molecular structures become rigidified and planarized, which brings about large horizontal dipole ratios. As a result, 2CNDPBPPr-TPA and 4CNDPBPPr-TPA can perform as emitters efficiently in OLEDs, furnishing excellent external quantum efficiencies of 28.8 % at 616 nm and 20.2 % at 648 nm, which are significantly improved in comparison with that of the control molecule without cyano substituents. The findings in this work demonstrate that the introduction of cyano substituents to the acceptors of delayed fluorescence molecules could be a facile and effective approach to explore high-efficiency red or deep red delayed fluorescence materials.

9.
Adv Mater ; 36(2): e2310417, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971674

RESUMO

The spectral narrowing engineering of pure-organic emitters attracts great research interests in realizing high color purity. Here, the adjusted medium-range charge transfer (MCT) strategy of TIC-BO with rigid planar structure by fusing two typical UV-emitting multiple resonance (MR) fragments via the ingenious double-halide cyclized coupling reaction is reported. The resulting TIC-BO with MCT nature shows efficient violet-blue emission in dilute toluene and evaporated host-guest films, and desirably narrowed spectra are achieved by the suppression of structural relaxation and the shortened charge transfer states. The single-doped device with TIC-BO as emitter shows narrowed violet-blue electroluminescence peaked at 428 nm with full-width at half-maximum of 43 nm (0.28 eV), and the Commission Internationale de l'Éclairage coordinates of (0.160, 0.050). A maximum external quantum efficiency (EQEmax ) of 20.50% is achieved, which is among the best results of the corresponding violet-blue emitting region. Further introduction of a stronger electron-donating carbazole group makes TIC-BNO exhibit red-shifted sky-blue emission with MR-dominant properties, and good device performance is received with EQEmax of 34.58%. The outstanding performances of TIC-BO successfully demonstrate the significance and prospect of the proposed molecular design strategy.

10.
Small ; 20(8): e2305589, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828633

RESUMO

In consideration of energy economization and light quality, concurrently attaining high external quantum efficiency (ηext ) and high color rendering index (CRI) is of high significance for the commercialization of hybrid white organic light-emitting diodes (WOLEDs) but is challenging. Herein, a blue luminescent molecule (2PCz-XT) consisting of a xanthone acceptor and two 3,6-diphenylcarbazole donors is prepared, which exhibits strong delayed fluorescence, short delayed fluorescence lifetime, and excellent electroluminescence property, and can sensitize green, orange, and red phosphorescent emitters efficiently. By employing 2PCz-XT as sensitizer and phosphorescent emitters as dopants, efficient two-color and three-color WOLED architectures with ultra-thin phosphorescent emitting layers (EMLs) are proposed and constructed. By incorporating a thin interlayer to modulate exciton recombination zone and reduce exciton loss, high-performance three-color hybrid WOLEDs are finally achieved, providing a high ηext of 26.8% and a high CRI value 83 simultaneously. Further configuration optimization realizes a long device operational lifetime. These WOLEDs with ultra-thin phosphorescent EMLs are among the state-of-the-art hybrid WOLEDs in the literature, demonstrating the success and applicability of the proposed device design for developing robust hybrid WOLEDs with superb efficiency and color quality.

11.
Proc Natl Acad Sci U S A ; 120(52): e2302761120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109527

RESUMO

For degradation of ß-lactam antibiotics pollution in waters, the strained ß-lactam ring is the most toxic and resistant moiety to biodegrade and redox-chemically treat among their functional groups. Hydrolytically opening ß-lactam ring with Lewis acid catalysts has long been recognized as a shortcut, but at room temperature, such hydrolysis is too slow to be deployed. Here, we found when Cu2+ was immobilized on imine-linked COF (covalent organic framework) (Cu2+/Py-Bpy-COF, Cu2+ load is 1.43 wt%), as-prepared composite can utilize the light irradiation (wavelength range simulated sunlight) to in situ heat anchored Cu2+ Lewis acid sites through an excellent photothermal conversion to open the ß-lactam ring followed by a desired full-decarboxylation of hydrolysates. Under 1 W/cm2 simulated sunlight, Cu2+/Py-Bpy-COF powders placed in a microfiltration membrane rapidly cause a temperature rising even to ~211.7 °C in 1 min. It can effectively hydrolyze common ß-lactam antibiotics in waters and even antibiotics concentration is as high as 1 mM and it takes less than 10 min. Such photo-heating hydrolysis rate is ~24 times as high as under dark and ~2 times as high as Cu2+ homogenous catalysis. Our strategy significantly decreases the interference from generally coexisting common organics in waters and potential toxicity concerns of residual carboxyl groups in hydrolysates and opens up an accessible way for the settlement of ß-lactam antibiotics pollutants by the only energy source available, the sunlight.


Assuntos
Poluentes Ambientais , Antibióticos beta Lactam , Temperatura Alta , Domínio Catalítico , Ácidos de Lewis , Antibacterianos/metabolismo , beta-Lactamas , Monobactamas
12.
Phys Chem Chem Phys ; 25(43): 29451-29458, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37882197

RESUMO

The lifetime of blue organic light-emitting diodes (OLEDs) has always been a big challenge in practical applications. Blue OLEDs based on triplet-triplet annihilation (TTA) up-conversion materials have potential to achieve long lifetimes due to fusing two triplet excitons to one radiative singlet exciton, but there is a lack of an in-depth understanding of exciton dynamics on degradation mechanisms. In this work, we established a numerical model of exciton dynamics to study the impact factors in the stability of doped blue OLEDs based on TTA up-conversion hosts. By performing transient electroluminescence experiments, the intrinsic parameters related to the TTA up-conversion process of aging devices were determined. By combining the change of excess charge density in the emitting layer (EML) with aging time, it is concluded that the TTA materials are damaged by the excess electrons in the EML during ageing, which is the main degradation mechanism of OLEDs. This work provides a theoretical basis for preparing long-lifetime blue fluorescent OLEDs.

13.
Phys Chem Chem Phys ; 25(39): 26878-26884, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782517

RESUMO

Aggregation-induced delayed fluorescence (AIDF) materials have great potential in non-doped OLEDs due to their high photoluminescence (PL) quantum efficiency in film, high exciton utilization in the aggregated state and negligible efficiency roll-off at high luminance. However, their efficient mechanism in OLEDs is not yet well understood. Here, the exciton dynamics are used to investigate the electroluminescence (EL) mechanism of an AIDF emitter (4-(10H-phenoxazin-10-yl)phenyl)-(9-phenyl-9H-carbazol-3-yl)methanone (CP-BP-PXZ) in detail. It can be seen that the high efficiency and negligible efficiency roll-off in non-doped OLEDs based on CP-BP-PXZ as the emitter are ascribed to the effective reverse intersystem crossing (RISC) from high level triplet T2 to singlet S1 in the aggregated state. Furthermore, CP-BP-PXZ also exhibits excellent properties as a phosphor host due to its good AIDF properties. Thus, high-efficiency red phosphorescent OLEDs with low roll-off efficiency are successfully fabricated based on CP-BP-PXZ as the host. The maximum external quantum efficiency (EQEmax) reaches 23% and is maintained at 21% at a luminance of 1000 cd m-2.

14.
Angew Chem Int Ed Engl ; 62(43): e202310388, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37668100

RESUMO

Aggregation-induced emission (AIE) luminogens (AIEgens) are attractive for the construction of non-doped blue organic light-emitting diodes (OLEDs) owning to their high emission efficiency in the film state. However, the large internal inversion rate (kIC (Tn) ) between high-lying triplet levels (Tn ) and Tn-1 causes a huge loss of triplet excitons, resulting in dissatisfied device performance of these AIEgens-based non-doped OLEDs. Herein, we designed and synthesized a blue luminogen of DPDPB-AC by fusing an AIEgen of TPB-AC and a DMPPP, which feature hot exciton and triplet-triplet annihilation (TTA) up-conversion process, respectively. DPDPB-AC successfully inherits the AIE feature and excellent horizontal dipole orientation of TPB-AC. Furthermore, it owes smaller kIC (Tn) than TPB-AC. When DPDPB-AC was applied in OLED as non-doped emitting layer, an outstanding external quantum efficiency of 10.3 % and an exceptional brightness of 69311 cd m-2 were achieved. The transient electroluminescent measurements and steady-state dynamic analysis confirm that both TTA and hot exciton processes contribute to such excellent device performance. This work provides a new insight into the design of efficient organic fluorophores by managing high-lying triplet excitons.

15.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630921

RESUMO

All-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, I) are promising for displays due to wide color gamut, narrow emission bandwidth, and high photoluminescence quantum yield (PLQY). However, pure red perovskite NCs prepared by mixing halide ions often result in defects and spectral instabilities. We demonstrate a method to prepare stable pure red emission and high-PLQY-mixed-halide perovskite NCs through simultaneous halide-exchange and ligand-exchange. CsPbBr3 NCs with surface organic ligands are first synthesized using the ligand-assisted reprecipitation (LARP) method, and then ZnI2 is introduced for anion exchange to transform CsPbBr3 to CsPbBrxI3-x NCs. ZnI2 not only provides iodine ions but also acts as an inorganic ligand to passivate surface defects and prevent ion migration, suppressing non-radiative losses and halide segregation. The luminescence properties of CsPbBrxI3-x NCs depend on the ZnI2 content. By regulating the ZnI2 exchange process, red CsPbBrxI3-x NCs with organic/inorganic hybrid ligands achieve near-unity PLQY with a stable emission peak at 640 nm. The CsPbBrxI3-x NCs can be combined with green CsPbBr3 NCs to construct white light-emitting diodes with high-color gamut. Our work presents a facile ion exchange strategy for preparing spectrally stable mixed-halide perovskite NCs with high PLQY, approaching the efficiency limit for display or lighting applications.

16.
Mater Horiz ; 10(9): 3785-3790, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37409621

RESUMO

The geometry of the molecular skeleton is of importance for the property regulation of organic electronic materials. Herein, we present a phenyl-embedded molecular design strategy to adjust the molecular curvature and achieve the improvement of blue multiple resonance (MR)-emitters. The introduction of a bridged phenyl contributes to a highly twisted saddle skeleton and the separation of frontier molecular orbitals, which are beneficial for the increase of photoluminescence quantum yield (PLQY) as well as the decrease of singlet-triplet energy gap (ΔEST). Consequently, hp-BQAO features an accelerated reverse intersystem crossing rate and suppressed non-radiative decay rate simultaneously, which enables the assembly of high-performance narrowband blue OLEDs with a record-high external quantum efficiency (EQE) of 24.1% for the blue OLED devices exploiting nitrogen-carbonyl-containing MR-emitters without sensitizers.

17.
Adv Sci (Weinh) ; 10(23): e2301398, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271896

RESUMO

The fast OH- transfer between hydroxide layers is the key to enhancing the charge storage efficiency of layered double hydroxides (LDH)-based supercapacitors (SCs). Constructing interlayer reactive sites in LDH is much expected but still a huge challenge. In this work, CdS nano-dots (NDs) are introduced to interlayers of ultra-thin NiFe-LDH (denoted CdSinter. -NiFe-LDH), promoting the interlayer ions flow for higher redox activity. The excellent performance is not only due to the enlarged layer spacing (from 0.70 to 0.81 nm) but also stems from anchored interlayer reactive units and the undamaged original layered structure of LDH, which contribute to the improvement of OH- diffusion coefficient (1.6 × 10-8  cm2  s-1 ) and electrochemical active area (601 mF cm-2 ) better than that of CdS NDs on the surface of NiFe-LDH (2.1 × 10-9  cm2  s-1 and 350 mF cm-2 ). The champion CdSinter. -NiFe-LDH electrode displays high capacitance of 3330.0 F g-1 at 1 A g-1 and excellent retention capacitance of 90.9% at 10 A g-1 , which is better than the NiFe-LDH with CdS NDs on the surface (1966.6 F g-1 ). Moreover, the assembled     asymmetric SCs (ASC) device demonstrate an outstanding energy density/power density (121.56 Wh kg-1 /754.5 W kg-1 ).

18.
Chem Sci ; 14(17): 4564-4570, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37152269

RESUMO

Figuring out the specific pathway of semiconductor-mediated proton-coupled electron transfer (PCET) driven by light is essential to solar energy conversion systems. In this work, we reveal that the amount of adsorbed water molecules determines the photo-induced PCET pathway on the TiO2 surface through systematic kinetic solvent isotope effect (KSIE) experiments. At low water content (<1.7 wt%), the photo-induced single-proton/single-electron transfer on TiO2 nanoparticles follows a stepwise PT/ET pathway with the formation of high-energy H+/D+-O[double bond, length as m-dash]C or H+/D+-O-C intermediates, resulting in an inverse KSIE (H/D) ∼0.5 with t Bu3ArO· and KSIE (H/D) ∼1 with TEMPO in methanol-d 0/d 4 systems. However, at high water content (>2 wt%), the PCET reaction follows a concerted pathway with a lower energy barrier, leading to normal KSIEs (H/D) ≥ 2 with both reagents. In situ ATR-FTIR observation and DFT calculations suggest that water molecules' existence significantly lowers the proton/electron transfer energy barrier, which coincides with our experimental observations.

19.
ACS Nano ; 17(11): 10774-10782, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37252947

RESUMO

Constructing a favorable reaction configuration at the water/catalyst interface is crucial for high-efficiency semiconductor-based water splitting. For a long time, a hydrophilic surface of semiconductor catalysts has been considered necessary for efficient mass transfer and adequate contact with water. In this work, by constructing a superhydrophobic PDMS-Ti3+/TiO2 interface (denoted P-TTO) with nanochannels arranged by nonpolar silane chains, we observe overall water splitting efficiencies improved by an order of magnitude under both the white light and simulated AM1.5G solar irradiation compared to the hydrophilic Ti3+/TiO2 interface. The electrochemical overall water splitting potential on the P-TTO electrode also decreased from 1.62 to 1.27 V, which is close to the thermodynamic limit of 1.23 V. Through the in situ diffuse reflection infrared Fourier transform spectroscopy, a nanochannel-induced water configuration transition is directly detected. The density functional theory calculation further verifies the lower reaction energy of water decomposition at the water/PDMS-TiO2 interface. Our work achieves efficient overall water splitting through nanochannel-induced water configurations without changing the bulk of semiconductor catalyst, which reveals the significant role of water status at the interface in the efficiency of the water splitting reaction over the properties of catalyst materials.

20.
Nat Commun ; 14(1): 2394, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100785

RESUMO

The pursuit of ideal short-delayed thermally activated delayed fluorescence (TADF) emitters is hampered by the mutual exclusion of a small singlet-triplet energy gap (ΔEST) and a large oscillator strength (f). Here, by attaching an multiresonance-acceptor onto a sterically-uncrowded donor, we report TADF emitters bearing hybrid electronic excitations with a main donor-to-acceptor long-range (LR) and an auxiliary bridge-phenyl short-range (SR) charge-transfer characters, balancing a small ΔEST and a large f. Moreover, the incorporation of dual equivalent multiresonance-acceptors is found to double the f value without affecting the ΔEST. A large radiative decay rate over an order of magnitude higher than the intersystem crossing (ISC) rate, and a decent reverse ISC rate of >106 s-1 are simultaneously obtained in one emitter, leading to a short delayed-lifetime of ~0.88 µs. The corresponding organic light-emitting diode exhibits a record-high maximum external quantum efficiency of 40.4% with alleviated efficiency roll-off and extended lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...