Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
Acta Pharmacol Sin ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152295

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive impairments. Despite the limited efficacy of current treatments for AD, the 1,2,4-oxadiazole structure has garnered significant attention in medicinal chemistry due to its potential impact on mGluR1 and its association with AD therapy. In this study, a series of novel 1,2,4-oxadiazole derivatives were designed, synthesized, and evaluated for the neuroprotective effects in human neuroblastoma (SH-SY5Y) cells. Among all the derivatives tested, FO-4-15 (5f) existed the lowest cytotoxicity and the highest protective effect against H2O2. Based on these in vitro results, FO-4-15 was administered to 3×Tg mice and significantly improved the cognitive impairments of the AD mice. Pathological analysis showed that FO-4-15 significantly reduced Aß accumulation, Tau hyper-phosphorylation, and synaptic impairments in the 3×Tg mice. Dysfunction of the CaMKIIα/Fos signaling pathway in 3×Tg mice was found to be restored by FO-4-15 and the necessity of the CaMKIIα/Fos for FO-4-15 was subsequently confirmed by the use of a CaMKIIα inhibitor in vitro. Beyond that, mGluR1 was identified to be a potential target of FO-4-15, and the interaction of FO-4-15 and mGluR1 was displayed by Ca2+ flow increase, molecular docking, and interaction energy analysis. The target of FO-4-15 was further confirmed in vitro by JNJ16259685, a nonselective inhibitor of mGluR1. These findings suggest that FO-4-15 may hold promise as a potential treatment for Alzheimer's disease.

3.
Phys Chem Chem Phys ; 26(32): 21668-21676, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087867

RESUMO

Bismuth halogenoxide (BiOX)-based heterojunctions have garnered considerable attention recently due to their potential to enhance photocatalytic performance. However, the predominant focus on II-type heterojunctions has posed challenges in achieving the requisite band edge positions for efficient water splitting. In this investigation, stable van der Waals SbPO4/BiOClxBr1-x heterojunctions were constructed theoretically by using density-functional theory (DFT). Our findings demonstrate that SbPO4 can modulate the formation of Z-scheme heterojunctions with BiOClxBr1-x. The structural properties of BiOX were preserved, while reaching excellent photocatalytic capabilities with high redox capacities. Further investigation unveiled that the band edge positions of the heterojunctions fully satisfy the oxidation-reduction potential of water. Moreover, these heterojunctions exhibit notable absorption efficiency in the visible range, with absorption increasing as x decreases. Our research provides valuable theoretical insights for the experimental synthesis of high-performance BiOX-based photocatalysts for water splitting, leveraging the unique properties of SbPO4. These insights contribute to the advancement of clean energy technology.

4.
Sci Rep ; 14(1): 18087, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103433

RESUMO

In order to investigate the mechanism of plant growth promoting (PGP) effects of strain Bacillus velezensis WSW007, its PGP traits and production of volatile organic compounds (VOCs) were tested. The effects of VOCs produced by strain WSW007 on plant growth were observed by co-culturing this strain with tobacco seedlings in I-plates. Meanwhile, the effects of VOCs on tobacco gene expression were analysed by a transcriptome analysis and VOCs were identified by solid phase micro extraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS) analysis. As results, strains WSW007 produced acetic acid and siderophore, and could solubilize phosphate; while it also significantly increased the fresh weight of tobacco seedlings via production of VOCs. In transcriptome analysis, plants co-cultured with strain WSW007 presented the highest up-regulated expression for the genes involved in plant growth and development processes, implying that the bacterial VOCs played a role as regulator of plant gene expression. Conclusively, the up-regulation in expression of growth- and development-related genes via VOCs production is an important PGP mechanism in strain B. velezensis WSW007.


Assuntos
Bacillus , Regulação da Expressão Gênica de Plantas , Nicotiana , Regulação para Cima , Compostos Orgânicos Voláteis , Bacillus/metabolismo , Bacillus/genética , Compostos Orgânicos Voláteis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/microbiologia , Perfilação da Expressão Gênica , Cromatografia Gasosa-Espectrometria de Massas , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
5.
Nutrients ; 16(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125294

RESUMO

Immunodeficiency can disrupt normal physiological activity and function. In this study, donkey bone collagen peptide (DP) and its iron chelate (DPI) were evaluated their potential as immunomodulators in cyclophosphamide (Cytoxan®, CTX)-induced Balb/c mice. The femoral tissue, lymphocytes, and serum from groups of mice were subjected to hematoxylin and eosin (H&E) staining, methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell proliferation assays, and enzyme-linked immunosorbent assay (ELISA), respectively. Furthermore, a non-targeted metabolomics analysis based on UPLC-MS/MS and a reverse transcription polymerase chain reaction (RT-qPCR) technology were used to explore the specific metabolic pathways of DPI regulating immunocompromise. The results showed that CTX was able to significantly reduce the proliferative activity of mouse splenic lymphocytes and led to abnormal cytokine expression. After DP and DPI interventions, bone marrow tissue damage was significantly improved. In particular, DPI showed the ability to regulate the levels of immune factors more effectively than Fe2+ and DP. Furthermore, metabolomic analysis in both positive and negative ion modes showed that DPI and DP jointly regulated the levels of 20 plasma differential metabolites, while DPI and Fe2+ jointly regulated 14, and all 3 jointly regulated 10. Fe2+ and DP regulated energy metabolism and pyrimidine metabolism pathways, respectively. In contrast, DPI mainly modulated the purine salvage pathway and the JAK/STAT signaling pathway, which are the key to immune function. Therefore, DPI shows more effective immune regulation than Fe2+ and DP alone, and has good application potential in improving immunosuppression.


Assuntos
Colágeno , Ciclofosfamida , Equidae , Quelantes de Ferro , Camundongos Endogâmicos BALB C , Animais , Colágeno/metabolismo , Quelantes de Ferro/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Peptídeos/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Imunossupressores/farmacologia , Metabolômica , Citocinas/metabolismo , Masculino , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Terapia de Imunossupressão
6.
J Org Chem ; 89(16): 11136-11147, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39106492

RESUMO

C-Alkyl glycosides, an important class of C-glycosides, are widely found in various drugs and natural products. The synthesis of C-alkyl glycosides has attracted considerable attention. Herein, we developed a Ni/photoredox catalyzed decarboxylative C(sp3)-C(sp3) coupling reaction of stable glycosylcarboxylic acids with simple aliphatic bromides to generate C-alkyl glycosides. The method successfully linked several functional molecular fragments (natural products or drugs) to a sugar moiety, showing the extensive application prospects of this transformation. Controlled experiments and DFT calculations demonstrated that the reaction pathway contains a free radical process, and a possible mechanism is proposed.

7.
Environ Pollut ; 360: 124626, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084589

RESUMO

Microplastic (MP) contamination in soil severely impairs plant growth. However, mechanisms underlying the effects of MPs on plant nutrient uptake remain largely unknown. In this study, we revealed that NO3- content was significantly decreased in shoots and roots of wheat plants exposed to high concentrations (50-100 mg L-1) of MPs (1 µm and 0.1 µm; type: polystyrene) in the hydroponic solution. Isotope labeling experiments demonstrated that MP exposure led to a significant inhibition of NO3- uptake in wheat roots. Further analysis indicated that the presence of MPs markedly inhibited root growth and caused oxidative damage to the roots. Additionally, superoxide dismutase and peroxidase activities in wheat roots decreased under all MP treatments, whereas catalase and ascorbate peroxidase activities significantly increased under the 100 mg L-1 MP treatment. The transcription levels of most nitrate transporters (NRTs) in roots were significantly downregulated by MP exposure. Furthermore, exposure to MPs distinctly suppressed the activity of nitrate reductase (NR) and nitrite reductase (NiR), as well as the expression levels of their coding genes in wheat shoots. These findings indicate that a decline in root uptake area and root vitality, as well as in the expression of NRTs, NR, and NiR genes caused by MP exposure may have adverse effects on NO3- uptake and assimilation, consequently impairing normal growth of plants.

8.
Front Sports Act Living ; 6: 1383228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045568

RESUMO

Background: Lumbosacral muscle strain (LMS) is common in Chinese elite trampoline athletes. Advanced lumbar muscle activation is necessary for postural control before upper extremity voluntary movements, called anticipatory postural adjustment to reduce internal postural interference (IPI). The potential of delayed lumbar muscle activation has been reported in patients with non-specific LBP (NLBP) in response to IPI. However, it remains unknown whether this effect exists in elite trampoline athletes. There is also limited literature reporting the rehabilitation of LMS in this population. This study first aimed to explore whether elite trampoline athletes with LMS experience delayed activation of lumbar muscles under IPI. The secondary aim was to preliminarily evaluate an integrative rehabilitation program's effectiveness. Materials and methods: Ten elite trampoline athletes with LMS were recruited and received 10 sessions of integrative rehabilitation, including extracorporeal shock wave therapy, acupuncture, Tui-na, and spine function exercises. At baseline and after all sessions, the relative activation time of the lumbar muscles under IPI in a modified rapid arm-rise test was used as a primary outcome measure. The secondary measures included a visual analog scale (VAS) and a questionnaire to assess low back pain (LBP) and athletic training performance. Results: The relative activation time of the lumbar muscles under IPI was delayed at baseline, but significantly decreased after the intervention (P < 0.05). The VAS was significantly decreased after the intervention (P < 0.05). There was no significant correlation between the difference in VAS and in activation time of the lumbar muscles before and after the intervention (P > 0.05). Conclusions: Elite trampoline athletes with LMS had delayed activation in their lumbar muscles under IPI. Integrative rehabilitation was effective in LBP relief and neuromuscular control of the lumbar muscles, and impacted positively on training performance. Future studies with a larger sample size, a control group, and long-term follow-ups are needed to further examine the efficacy of integrative rehabilitation in elite trampoline athletes with LMS. Additionally, the application of this approach in athletes with LMS or LBP in other sports, particularly those involving IPI, should be explored.

9.
Heliyon ; 10(12): e32779, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975226

RESUMO

Background: Sepsis is a life-threatening condition marked by a severe systemic response to infection, leading to widespread inflammation, cellular signaling disruption, and metabolic dysregulation. The role of lipid and amino acid metabolism in sepsis is not fully understood, but aberrations in this pathway could contribute to the disease's pathophysiology. Methods: To explore the potential of lipid and amino acid compounds as biomarkers for the diagnosis and prognosis of sepsis, a two-sample Mendelian Randomization (MR) study was conducted, examining the relationship between sepsis and 249 serum lipid and amino acid-related markers. Key enzymes involved in synthesis of phosphatidylcholine, including choline/ethanolamine phosphotransferase 1 (CEPT1), choline phosphotransferase 1 (CPT1), and ethanolamine phosphotransferase 1 (EPT1), were also targeted for drug-target Mendelian randomization. Results: The study found that phosphatidylcholines (OR IVW: 0.88, 95%CI: 0.80-0.96, p = 0.005) and phospholipids in medium HDL (OR IVW: 0.86, 95%CI: 0.77-0.96, p = 0.007) potentially exhibit a protective effect against sepsis nominally. However, the potential drug target of CEPT1, CPT1, and EPT1 was found to be unrelated to septic outcomes. Conclusion: Our findings suggest that increasing levels of phosphatidylcholines and medium HDL phospholipids may reduce the incidence of sepsis. This highlights the potential of lipid-based biomarkers in the diagnosis and management of sepsis, opening avenues for new therapeutic strategies.

10.
J Asian Nat Prod Res ; : 1-10, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996034

RESUMO

Three new diterpenoid alkaloids (1, 2, 3) and seventeen known (4-20) compounds were isolated from the whole plant of Delphinium sherriffii Munz (Ranunculaceae). Their structures were elucidated by various spectroscopic analyses, including IR, HR-ESI-MS, 1D and 2D NMR spectra. All compounds were evaluated for the inhibitory activity of Sf9 cells and compound 5 exhibited the strongest cytotoxicity (IC50 = 8.97 µM) against Sf9 cell line.

12.
Inorg Chem ; 63(30): 14206-14215, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39012836

RESUMO

Converting CO2 into value-added products containing B-C bonds is a great challenge, especially for multiple B-C bonds, which are versatile building blocks for organoborane chemistry. In the condensed phase, the B-C bond is typically formed through transition metal-catalyzed direct borylation of hydrocarbons via C-H bond activation or transition metal-catalyzed insertion of carbenes into B-H bonds. However, excessive amounts of powerful boryl reagents are required, and products containing B-C bonds are complex. Herein, a novel method to construct multiple B-C bonds at room temperature is proposed by the gas-phase reactions of CO2 with LaBmOn- (m = 1-4, n = 1 or 2). Mass spectrometry and density functional theory calculations are applied to investigate these reactions, and a series of new compounds, CB2O2-, CB3O3-, and CB3O2-, which possess B-C bonds, are generated in the reactions of LaB3,4O2- with CO2. When the number of B atoms in the clusters is reduced to 2 or 1, there is only CO-releasing channel, and no CBxOy- compounds are released. Two major factors are responsible for this quite intriguing reactivity: (1) Synergy of electron transfer and boron-boron Lewis acid-base pair mechanisms facilitates the rupture of C═O double bond in CO2. (2) The boron sites in the clusters can efficiently capture the newly formed CO units in the course of reactions, favoring the formation of B-C bonds. This finding may provide fundamental insights into the CO2 transformation driven by clusters containing lanthanide atoms and how to efficiently build B-C bonds under room temperature.

13.
J Clin Anesth ; 97: 111520, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954871

RESUMO

STUDY OBJECTIVE: To assess the association of intraoperative hypotension with long-term survivals in older patients after major noncardiac surgery mainly for cancer. DESIGN: A secondary analysis of databases from three randomized trials with long-term follow-up. SETTING: The underlying trials were conducted in 17 tertiary hospitals in China. PATIENTS: Patients aged 60 to 90 years who underwent major noncardiac thoracic or abdominal surgeries (≥ 2 h) in a single center were included in this analysis. EXPOSURES: Restricted cubic spline models were employed to determine the lowest mean arterial pressure (MAP) threshold that was potentially harmful for long-term survivals. Patients were arbitrarily divided into three groups according to the cumulative duration or area under the MAP threshold. The association between intraoperative hypotension exposure and long-term survivals were analyzed with the Cox proportional hazard regression models. MEASUREMENTS: Our primary endpoint was overall survival. Secondary endpoints included recurrence-free and event-free survivals. MAIN RESULTS: A total of 2664 patients (mean age 69.0 years, 34.9% female sex, 92.5% cancer surgery) were included in the final analysis. MAP < 60 mmHg was adopted as the threshold of intraoperative hypotension. Patients were divided into three groups according to duration under MAP < 60 mmHg (<1 min, 1-10 min, and > 10 min) or area under MAP <60 mmHg (< 1 mmHg⋅min, 1-30 mmHg⋅min, and > 30 mmHg⋅min). After adjusting confounders, duration under MAP < 60 mmHg for > 10 min was associated with a shortened overall survival when compared with the < 1 min patients (adjusted hazard ratio [HR] 1.31, 95% confidence interval [CI] 1.09 to 1.57, P = 0.004); area under MAP < 60 mmHg for > 30 mmHg⋅min was associated with a shortened overall survival when compared with the < 1 mmHg⋅min patients (adjusted HR 1.40, 95% CI 1.16 to 1.68, P < 0.001). Similar associations exist between duration under MAP < 60 mmHg for > 10 min or area under MAP < 60 mmHg for > 30 mmHg⋅min and recurrence-free or event-free survivals. CONCLUSIONS: In older patients who underwent major noncardiac surgery mainly for cancer, intraoperative hypotension was associated with worse overall, recurrence-free, and event-free survivals.

14.
Plant J ; 119(2): 879-894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923085

RESUMO

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/parasitologia , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animais , Giberelinas/metabolismo , Gossipol/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resistência à Doença/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Mariposas/fisiologia , Larva/crescimento & desenvolvimento
15.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1337-1346, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886433

RESUMO

Shanxi Province holds an important strategic position in the overall ecological pattern of the Yellow River Basin. To investigate the changes of the ecological environment in the Shanxi section of the Yellow River Basin from 2000 to 2020, we selected MODIS remote sensing image data to determine the remote sensing ecological index (RSEI) based on the principal component analysis of greenness, humidity, dryness, and heat. Then, we analyzed the spatial and temporal variations of ecological quality in this region to explore the influencing factors. We further used the CA-Markov model to simulate and predict the ecological environment under different development scenarios in the Shanxi section of the Yellow River Basin in 2030. The results showed that RSEI had good applicability in the Shanxi section of the Yellow River Basin which could be used to monitor and evaluate the spatiotemporal variations in its ecological environment. From 2000 to 2020, the Shanxi section of the Yellow River Basin was dominated by low quality habitat areas, in which the ecological environment quality continued to improve from 2000 to 2010 and decreased from 2010 to 2020. The high quality habitat areas mainly located on the mountainous areas with superior natural conditions and rich biodiversity, while the low ecological quality areas were mainly in the Taiyuan Basin and the northern part of the study area, where the mining industry developed well. Climate factors were negatively correlated with ecological environment quality in the northern and central parts of the study area, and positively correlated with that in the mountainous area. Under all three development scenarios, the area of cultivated land, forest, water and construction land increased in 2030 compared to that in 2020. Compared to the natural development scenario and the cultivated land protection scenario, the ecological constraint scenario with RSEI as the limiting factor had the highest area of new forest and the lowest expansion rate of cultivated land and construction land. The results would provide a reference for land space planning and ecological environment protection in the Shanxi section of the Yellow River Basin.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Rios , China , Monitoramento Ambiental/métodos , Imagens de Satélites , Ecologia
16.
Acta Pharmacol Sin ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871923

RESUMO

Poly (ADP-ribose) polymerase 1 (PARP1) is a DNA-binding protein that is involved in various biological functions, including DNA damage repair and transcription regulation. It plays a crucial role in cisplatin resistance. Nevertheless, the exact regulatory pathways governing PARP1 have not yet been fully elucidated. In this study, we present evidence suggesting that the hepatitis B X-interacting protein (HBXIP) may exert regulatory control over PARP1. HBXIP functions as a transcriptional coactivator and is positively associated with PARP1 expression in tissues obtained from hepatoma patients in clinical settings, and its high expression promotes cisplatin resistance in hepatoma. We discovered that the oncogene HBXIP increases the level of PARP1 m6A modification by upregulating the RNA methyltransferase WTAP, leading to the accumulation of the PARP1 protein. In this process, on the one hand, HBXIP jointly activates the transcription factor ETV5, promoting the activation of the WTAP promoter and further facilitating the promotion of the m6A modification of PARP1 by WTAP methyltransferase, enhancing the RNA stability of PARP1. On the other hand, HBXIP can also jointly activate the transcription factor CEBPA, enhance the activity of the PARP1 promoter, and promote the upregulation of PARP1 expression, ultimately leading to enhanced DNA damage repair capability and promoting cisplatin resistance in hepatoma. Notably, aspirin inhibits HBXIP, thereby reducing the expression of PARP1. Overall, our research revealed a novel mechanism for increasing PARP1 abundance, and aspirin therapy could overcome cisplatin resistance in hepatoma.

17.
FASEB J ; 38(13): e23745, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923065

RESUMO

Idiopathic granulomatous mastitis (IGM), a recurrent inflammation disease of the non-lactating breast, has had an increasing clinical morbidity rate in recent years, and its complicated symptoms and unclear etiology make it challenging to treat. This rare benign inflammatory breast disease, centered on the lobules, represents the most challenging type of non-puerperal mastitis (NPM), also known as non-lactating mastitis. In this study, patients diagnosed with IGM (M, n = 23) were recruited as cases, and patients with benign control breast disease (C, n = 17) were enrolled as controls. Cytokine microarray detection measured and analyzed the differentially expressed cytokine factors between IGM and control patients. Then, we verified the mRNA and protein expression levels of the significantly changed cytokine factors using Q-RT-PCR, ELISA, western blot, and IHC experiments. The cytokine factor expression levels significantly changed compared to the control group. We observed a significant increase between IGM and control patients in cytokine factors expression, such as interleukin-1ß (IL-1ß), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, MIP-1ß, tumor necrosis factor receptor 2 (TNF RII). Then, we verified the expression of these top five dysregulated factors in both mRNA and protein levels. Our results demonstrated the cytokine map in IGM and indicated that several cytokines, especially chemokines, were associated with and significantly dysregulated in IGM tissues compared to the control group. The chemokine factors involved might be essential in developing and treating IGM. These findings would be helpful for a better understanding of IGM and offer valuable insights for devising novel diagnostic and therapeutic strategies.


Assuntos
Quimiocinas , Mastite Granulomatosa , Humanos , Feminino , Mastite Granulomatosa/metabolismo , Mastite Granulomatosa/genética , Adulto , Quimiocinas/metabolismo , Quimiocinas/genética , Pessoa de Meia-Idade , Citocinas/metabolismo , Citocinas/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Estudos de Casos e Controles , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética
18.
Acta Pharmacol Sin ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942954

RESUMO

C/EBP homologous protein (CHOP) triggers the death of multiple cancers via endoplasmic reticulum (ER) stress. However, the function and regulatory mechanism of CHOP in liver cancer remain elusive. We have reported that late endosomal/lysosomal adapter, mitogen-activated protein kinase and mTOR activator 5 (LAMTOR5) suppresses apoptosis in various cancers. Here, we show that the transcriptional and posttranscriptional inactivation of CHOP mediated by LAMTOR5 accelerates liver cancer growth. Clinical bioinformatic analysis revealed that the expression of CHOP was low in liver cancer tissues and that its increased expression predicted a good prognosis. Elevated CHOP contributed to destruction of LAMTOR5-induced apoptotic suppression and proliferation. Mechanistically, LAMTOR5-recruited DNA methyltransferase 1 (DNMT1) to the CpG3 region (-559/-429) of the CHOP promoter and potentiated its hypermethylation to block its interaction with general transcription factor IIi (TFII-I), resulting in its inactivation. Moreover, LAMTOR5-enhanced miR-182/miR-769 reduced CHOP expression by targeting its 3'UTR. Notably, lenvatinib, a first-line targeted therapy for liver cancer, could target the LAMTOR5/CHOP axis to prevent liver cancer progression. Accordingly, LAMTOR5-mediated silencing of CHOP via the regulation of ER stress-related apoptosis promotes liver cancer growth, providing a theoretical basis for the use of lenvatinib for the treatment of liver cancer.

19.
Sci Rep ; 14(1): 14265, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902360

RESUMO

With the increasing application of magnetic compression anastomosis (MCA) in gastrointestinal anastomosis, we identified an interesting phenomenon that an anastomosis is more prone to stenosis after endoscopic gastrointestinal MCA. We hypothesized that the increase in tissue tension during endoscopic procedures is the cause of anastomotic stenosis. In this study, we investigated the effect of tissue tension on gastroduodenal bypass MCA in Sprague-Dawley (SD) rats. Twenty SD rats were divided into the study group (high-tension group, n = 10) and control group (no tension group, n = 10), wherein the rats underwent complete gastroduodenal bypass magnetic anastomosis under high tension and no tension of the digestive tract, respectively. Anastomotic specimens were obtained 4 weeks after the operation, and anastomotic diameters of the two groups were observed and measured. The histological difference was observed by hematoxylin & eosin and Masson staining. The operation was successfully completed in all rats, and all survived until 4 weeks postoperatively. Anastomotic measurements revealed that the anastomosis diameter was significantly smaller in the study group than in the control group, and there were three cases of severe anastomotic stenosis. Histological observation showed that the amount of collagen fibers in the anastomosis was greater in the study group than in the control group. The results suggest that the high-tension state of the digestive tract is an important factor leading to anastomotic stenosis, and thus, we put forward the Yan-Zhang's Tissue Tension Theory of MCA to explain this phenomenon.


Assuntos
Anastomose Cirúrgica , Ratos Sprague-Dawley , Animais , Anastomose Cirúrgica/métodos , Ratos , Masculino , Trato Gastrointestinal/cirurgia , Constrição Patológica/cirurgia , Magnetismo
20.
Exp Anim ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38797667

RESUMO

Ischemia/reperfusion (I/R) is a pathological process that occurs in numerous organs and is often associated with severe cellular damage and death. Ectodysplasin-A2 receptor (EDA2R) is a member of the TNF receptor family that has anti-inflammatory and antioxidant effects. However, to the best of our knowledge, its role in the progression of myocardial I/R injury remains unclear. The present study aimed to investigate the role of EDA2R during myocardial I/R injury and the molecular mechanisms involved. In vitro, dexmedetomidine (DEX) exhibited a protective effect on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and downregulated EDA2R expression. Subsequently, EDA2R silencing enhanced cell viability and reduced the apoptosis of cardiomyocytes. Furthermore, knockdown of EDA2R led to an elevated mitochondrial membrane potential (MMP), repressed the release of Cytochrome C and upregulated Bcl-2 expression. EDA2R knockdown also resulted in downregulated expression of Bax, and decreased activity of Caspase-3 and Caspase-9 in cardiomyocytes, reversing the effects of H/R on mitochondria-mediated apoptosis. In addition, knockdown of EDA2R suppressed H/R-induced oxidative stress. Mechanistically, EDA2R knockdown inactivated the NF-κB signaling pathway. Additionally, downregulation of EDA2R weakened myocardial I/R injury in mice, as reflected by improved left ventricular function and reduced infarct size, as well as suppressed apoptosis and oxidative stress. Additionally, EDA2R knockdown repressed the activation of NF-κB signal in vivo. Collectively, knockdown of EDA2R exerted anti-apoptotic and antioxidant effects against I/R injury in vivo and in vitro by suppressing the NF-κB signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...