RESUMO
Plant diseases caused by fungal pathogens represent main threats to the yield and quality of agricultural products, and Alternaria longipes is one of the most important pathogens in agricultural systems. Biological control is becoming increasingly prevalent in the management of plant diseases due to its environmental compatibility and sustainability. In the present study, a bacterial strain, designated as OPF-9, was shown to effectively inhibit the pathogen A. longipes, which was identified as Streptomyces globosus. The culture conditions for OPF-9 were optimized through a stepwise approach and the fermentation broth acquired displayed an excellent inhibitory activity against A. longipes in vitro and in vivo. Further investigations suggested that the fermentation broth exhibited strong stability under a range of adverse environmental conditions. To reveal the molecular bases of OPF-9 in inhibiting pathogens, the whole-genome sequencing and assembly were conducted on this strain. It showed that the genome size of OPF-9 was 7.668 Mb, containing a chromosome and two plasmids. Multiple clusters of secondary metabolite synthesis genes were identified by genome annotation analysis. In addition, the fermentation broth of strain OPF-9 was analyzed by LC-MS/MS non-target metabolomic assay and the activity of potential antifungal substances was determined. Among the five compounds evaluated, pyrogallol displayed the most pronounced inhibitory activity against A. longipes, which was found to effectively inhibit the mycelial growth of this pathogen. Overall, this study reported, for the first time, a strain of S. globosus that effectively inhibits A. longipes and revealed the underlying biocontrol mechanisms by genomic and metabolomic analyses.
Assuntos
Alternaria , Streptomyces , Alternaria/fisiologia , Streptomyces/metabolismo , Streptomyces/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Agentes de Controle Biológico , Metabolômica , Antifúngicos/farmacologia , Fermentação , Metabolismo Secundário , MultiômicaRESUMO
BACKGROUND: Kiwifruit soft rot is mainly caused by Botryosphaeria dothidea, representing a considerable threat to kiwifruit industry. This investigation assessed the inhibitory consequences and mechanisms of honokiol against B. dothidea, evaluating the inhibitory effects and underlying mechanism. RESULTS: A strain of B.dothidea (XFCT-2) was isolated from infected soft rot kiwifruit. The findings indicate that honokiol hindered the mycelial growth, conidial germination, and pathogenicity of B. dothidea in a dose-dependent manner, both in vitro and in vivo. Furthermore, ultrastructural examinations showed that honokiol impaired the integrity of B. dothidea, leading to an elevation in cell membrane permeability, engendering a multitude of intracellular substance extravasations and hampering energy metabolism. Transcriptome analysis exhibited that honokiol-regulated genes were related to membrane lipid biosynthesis, comprising ACC1, FAS2, Arp2, gk, Cesle, and Etnk1. These findings indicate that honokiol impedes B. dothidea by obstructing lipid biosynthesis within the cell membrane and compromising its integrity, halting the growth of the mycelia, which could potentially cause cellular demise. CONCLUSION: This investigation illustrates how honokiol functions as an eco-friendly approach to prevent the occurrence of soft rot in kiwifruits. © 2023 Society of Chemical Industry.
Assuntos
Actinidia , Compostos Alílicos , Ascomicetos , Compostos de Bifenilo , Fenóis , Perfilação da Expressão Gênica , Lipídeos de Membrana/farmacologiaRESUMO
BACKGROUND: Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive disease worldwide. Resistance genes that respond to Psa infection urgently need to be identified for controlling this disease. Laccase is mainly involved in the synthesis of lignin in the plant cell wall and plays a prominent role in plant growth and resistance to pathogen infection. However, the role of laccase in kiwifruit has not been reported, and whether laccase is pivotal in the response to Psa infection remains unclear. RESULTS: We conducted a bioinformatics analysis to identify 55 laccase genes (AcLAC1-AcLAC55) in the kiwifruit genome. These genes were classified into five cluster groups (I-V) based on phylogenetic analysis, with cluster groups I and II having the highest number of members. Analysis of the exon-intron structure revealed that the number of exons varied from 1 to 8, with an average of 5 introns. Our evolutionary analysis indicated that fragment duplication played a key role in the expansion of kiwifruit laccase genes. Furthermore, evolutionary pressure analysis suggested that AcLAC genes were under purifying selection. We also performed a cis-acting element analysis and found that AcLAC genes contained multiple hormone (337) and stress signal (36) elements in their promoter regions. Additionally, we investigated the expression pattern of laccase genes in kiwifruit stems and leaves infected with Psa. Our findings revealed that laccase gene expression levels in the stems were higher than those in the leaves 5 days after inoculation with Psa. Notably, AcLAC2, AcLAC4, AcLAC17, AcLAC18, AcLAC26, and AcLAC42 showed significantly higher expression levels (p < 0.001) compared to the non-inoculated control (0 d), suggesting their potential role in resisting Psa infection. Moreover, our prediction indicated that 21 kiwifruit laccase genes are regulated by miRNA397, they could potentially act as negative regulators of lignin biosynthesis. CONCLUSIONS: These results are valuable for further analysis of the resistance function and molecular mechanism of laccases in kiwifruit.
Assuntos
Actinidia , Lacase , Lacase/genética , Filogenia , Lignina , Evolução Biológica , Actinidia/genética , Actinidia/microbiologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
Kiwifruit canker is caused by Pseudomonas syringae pv. actinidiae and is one of the most destructive diseases of kiwifruit worldwide. Sulfur can improve the deposit of lignin in kiwifruit stems and induce disease resistance, but the action mechanism at the molecular level remains unclear. This omics-based study revealed that sulfur-induced S lignin synthesis contributes to disease resistance. Histological staining verified sulfur-enhanced total lignin deposition in kiwifruit stems. High-performance liquid chromatography and confocal Raman microscopy showed that sulfur-activated S lignin was mainly deposited in the cell corner. Metabolome and transcriptome analysis revealed that the levels of phenylpropanoid pathway S lignin precursors sinapic acid and sinapyl alcohol were significantly increased and 16 laccase genes were upregulated. Sulfur-induced resistance defense promoted elevated laccase activity by activating the laccase genes, participating in sinapic acid and sinapyl alcohol substance synthesis, and ultimately polymerizing S lignin at cell corner against kiwifruit canker disease.
Assuntos
Actinidia , Lacase , Lacase/genética , Lignina , Resistência à Doença , Metaboloma , Perfilação da Expressão Gênica , Actinidia/genética , EnxofreRESUMO
Kiwifruit canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the main threat to kiwifruit production worldwide. Currently, there is no safe and effective disease prevention method; therefore, biological control technologies are being explored for Psa. In this study, Bacillus velezensis WL-23 was isolated from the leaf microbial community of kiwifruit and used to control kiwifruit cankers. Indoor confrontation experiments showed that both WL-23 and its aseptic filtrate had excellent inhibitory activity against the main fungal and bacterial pathogens of kiwifruit. Changes in OD600, relative conductivity, alkaline proteinase, and nucleic acid content were recorded during Psa growth after treatment with the aseptic filtrate, showing that Psa proliferation was inhibited and the integrity of the cell membrane was destroyed; this was further verified using scanning electron microscopy and transmission electron microscopy. In vivo, WL-23 promoted plant growth, increased plant antioxidant enzyme activity, and reduced canker incidence. Therefore, WL-23 is expected to become a biological control agent due to its great potential to contribute to sustainable agriculture.
Assuntos
Actinidia , Bacillus , Pseudomonas syringae , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Actinidia/microbiologiaRESUMO
Soft rot causes significant economic losses in the kiwifruit industry. This study isolated strain CTXW 7-6-2 from healthy kiwifruit tissue; this was a gram-positive bacterium that produced the red pigment pulcherrimin. The phylogenetic tree based on 16S ribosomal RNA, gyrA, rpoB, and purH gene sequences identified CTXW 7-6-2 as a strain of Bacillus subtilis. CTXW 7-6-2 inhibited hyphal growth of pathogenic fungi that cause kiwifruit soft rot, namely, Botryosphaeria dothidea, Phomopsis sp., and Alternaria alternata, by 81.76, 69.80, and 32.03%, respectively. CTXW 7-6-2 caused the hyphal surface to become swollen and deformed. Volatile compounds (VOC) produced by the strain inhibited the growth of A. alternata and Phomopsis sp. by 65.74 and 54.78%, respectively. Whole-genome sequencing revealed that CTXW 7-6-2 possessed a single circular chromosome of 4,221,676 bp that contained 4,428 protein-coding genes, with a guanine and cytosine (GC) content of 43.41%. Gene functions were annotated using the National Center for Biotechnology Information (NCBI) non-redundant protein, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups of proteins, Gene Ontology, Pathogen-Host Interactions, Carbohydrate-Active enZYmes, and Rapid Annotations using Subsystem Technology databases, revealing non-ribosomal pathways associated with antifungal mechanisms, biofilm formation, chemotactic motility, VOC 3-hydroxy-2-butanone, cell wall-associated enzymes, and synthesis of various secondary metabolites. antiSMASH analysis predicted that CTXW 7-6-2 can produce the active substances bacillaene, bacillibactin, subtilosin A, bacilysin, and luminmide and has four gene clusters of unknown function. Quantitative real-time PCR (qRT-PCR) analysis verified that yvmC and cypX, key genes involved in the production of pulcherrimin, were highly expressed in CTXW 7-6-2. This study elucidates the mechanism by which B. subtilis strain CTXW 7-6-2 inhibits pathogenic fungi that cause kiwifruit soft rot, suggesting the benefit of further studying its antifungal active substances.
RESUMO
BACKGROUND: To evaluate the correlations between lipid layer thickness (LLT) and morphology and function of the meibomian glands in patients who were diagnosed as meibomian gland dysfunction (MGD) in different age groups. METHODS: Patients who have diagnosed as obstructive MGD were included in this prospective, cross-sectional study. Patients were divided into three groups: young (ages 20-39 years), middle-aged (ages 40-59 years), and older (aged ≥60 years). All patients completed an Ocular Surface Disease Index (OSDI) questionnaire and were evaluated for LLT, tear meniscus height (TMH), noninvasive tear film break-up time (NI-BUT) measurement, invasive TBUT (ITBUT), corneal fluoresceinstaining (CFS) score, eyelid margin abnormalities, Schirmer I test, and MG function and morphology, by using the Keratograph 5 and LipiView interferometer. RESULTS: Two hundred and nine patients (209 eyes) were included. The median LLT of all patient was 57 nm (IQR, 36.5 nm), and the LLT values were significantly different among the young group (median, 51 nm; IQR, 23.5 nm), middle-aged group (median, 59.5 nm; IQR 46.5 nm) and older group (median, 62 nm; IQR, 42.5 nm) (P = 0.033, Kruskal-Wallis test). In regression analyses controlling for confounder factors sex and MG loss, the LLT was positively correlated with age (ß = 5.539, P = 0.001). There was a negative correlation between LLT and MG dropout in the all (r = - 0.527, P < 0.001), young (r = - 0.536, P < 0.001), middle-aged (r = - 0.576, P < 0.001), and older (r = - 0.501, P < 0.001) groups. LLT was positively correlated with the MG expressibility in the all (r = 0.202, P = 0.003), middle-aged (r = 0.280, P = 0.044) and older (r = 0.452, p < 0.001) groups, but it was no statistical significance in the young group (r = 0.007, P = 0.949). CONCLUSIONS: The thickness of LLT was increased with age and significantly correlated with both MG secretion and morphology in middle-aged and older patients with obstructive MGD. LLT measurement is a useful screening tool for detecting obstructive MGD and age as an influential factor should be accounted for when interpreting the meaning of the LLT value. TRIAL REGISTRATION: NCT02481167 ; Registered 25 June, 2015.
Assuntos
Síndromes do Olho Seco , Disfunção da Glândula Tarsal , Adulto , Idoso , Estudos Transversais , Síndromes do Olho Seco/diagnóstico , Humanos , Lipídeos , Glândulas Tarsais/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Prospectivos , Lágrimas , Adulto JovemRESUMO
Purpose. To investigate the safety and efficacy of monocular treatment for elderly Chinese patients with meibomian gland dysfunction (MGD) with an automated thermodynamic system. Methods. This study was a prospective, examiner-masked, contralateral eye clinical trial. The eye perceived by the patient to be worse (test eye) received a 12-minute LipiFlow treatment, while the other eye served as control. All patients were examined before treatment and one week, one month, and three months after treatment. Clinical parameters included dry eye symptoms, lipid layer thickness (LLT), partial blink (PB) ratio, invasive tear breakup time (ITBUT) and cornea staining, Schirmer I test, meibomian glands yielding liquid secretion (MGYLS), and meibomian gland dropout. Results. A total of 29 patients were examined during the three-month follow-up. At each posttreatment visit, they had a significant reduction in dry eye symptoms accompanied by an increase of ITBUT and MGYLS and a reduction in corneal staining compared with the baseline parameters. There was a significant improvement in MGYLS and ITBUT in the test eye compared with the control eye. Other clinical parameters were not statistically significant. Conclusion. LipiFlow is an effective treatment for patients with MGD. Monocular treatment with LipiFlow may be a cost-effective treatment option to those afflicted with MGD in the developing world.