RESUMO
BACKGROUND: Tibial pilon malreductions are challenging to correctively reconstruct, and the relevant literature is limited. This study aims to assess whether corrective intra-articular osteotomy is worthwhile to treat relatively younger (<55-year-old) patients with intra-articular malreductions of pilon fractures. METHODS: This is a retrospective observational study with a minimum follow-up of 2 years. From 2013 to 2021, 21 patients (mean age: 39.2 ± 11.2 years) with intra-articular pilon malreductions ≥6 weeks treated with intra-articular osteotomies were analyzed. The median interval time until intra-articular osteotomy was 76 (interquartile range [IQR], 49-149) days. Plain radiographs and computed tomography were used for radiographic assessments. Clinical outcomes were evaluated with visual analog scale (VAS), the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot score, the 36-Item Short-Form Health Survey (SF-36) score, and ankle range of motion (ROM). RESULTS: The median follow-up duration was 34.6 (IQR, 26.1-74.3) months. The median articular displacement was reduced from 12.7 mm preoperatively to 2.7 mm postoperatively (P < .05). According to the Kellgren-Lawrence grading, 16 patients were assigned to stage II, 4 to stage III, and 1 to stage IV. In the 10 patients with available preoperative assessments, substantial improvement was found in the VAS score, from 5.90 to 2.0 at the final follow-up (P < .05). Similarly, the AOFAS ankle-hindfoot score and SF-36 scores improved (P < .05). Ankle ROM did not change a clinically meaningful amount. Progressive degenerative changes were noted in 2 of 10 patients who had adequate preoperative imaging. Four patients had VAS scores ≥4 including 1 patient who is scheduled for an arthrodesis. CONCLUSION: In this small series, we found that the corrective osteotomies generally provided reasonable improvement at 3 years in patients <55 years old with intra-articular malreduction of pilon fractures. Prospective cohort studies are needed to determine if it is worthwhile in long-term outcome.
RESUMO
Objective To evaluate the changes in the incidence of neural tube defects (NTDs) in Shaanxi province from 2003 to 2022,investigate the diagnosis time and outcomes of defective infants,and predict the incidence of NTDs in Shaanxi province from 2023 to 2025,thereby providing a basis for improving the birth defects surveillance system. Methods Data were collected from all the perinatal infants from 28 weeks of gestation to 7 days after birth in all the hospitals with obstetrical department in Shaanxi province during 2003-2022.The changes in the incidence of NTDs from 2003 to 2022 were analyzed based on the birth defects surveillance system. Results A total of 1 106 483 perinatal infants in Shaanxi province from 2003 to 2022 were surveyed,among which NTDs occurred in 848 perinatal infants,with an incidence of 7.66/10 000.The incidence was the highest (48.02/10 000) in 2005 and the lowest (0.57/10 000) in 2022.The NTDs in Shaanxi province were mainly spina bifida (55.90%),which was followed by anencephaly (25.71%) and encephalocele (18.40%).The incidences of the three declined with fluctuations (P<0.001).The results of the Joinpoint analysis showed that the incidence of NTDs decreased slowly with the annual percentage change of -4.04 from 2003 to 2014 and declined rapidly with the annual percentage change of -28.05 from 2014 to 2022.From 2003 to 2022,the average proportion of prenatal diagnosis of NTDs in Shaanxi province was 72.88%.Dead fetus (61.91%) was the main birth outcome,followed by live birth (26.77%),stillbirth (8.73%),and death within seven days after birth (2.59%).The incidence of NTDs in Shaanxi province from 2023 to 2025 were predicted by the GM (1,1) model as 0.49/10 000,0.41/10 000,and 0.35/10 000,respectively. Conclusion The incidence of NTDs in Shaanxi province declined significantly during 2003-2022,especially in a rapid manner after 2014.Dead fetus was the primary outcome of perinatal infants with NTDs,followed by live birth.
Assuntos
Defeitos do Tubo Neural , Humanos , Defeitos do Tubo Neural/epidemiologia , China/epidemiologia , Recém-Nascido , Incidência , Feminino , GravidezRESUMO
Despite recent advances in immunotherapy with immune checkpoint inhibitors (ICI), many patients with non-small cell lung cancer (NSCLC) fail to respond or develop resistance after an initial response. In situ vaccination (ISV) with engineered viruses has emerged as a promising antigen-agnostic strategy that can both condition the tumor microenvironment (TME) and augment anti-tumor T cell responses to overcome immune resistance. We engineered a live attenuated viral vaccine, Hyper-Interferon Sensitive virus (HIS), by conducting a genome-wide functional screening and introducing eight interferon (IFN)-sensitive mutations in the influenza genome. Compared to wild-type (WT) influenza, HIS replication was attenuated in immunocompetent hosts, enhancing its potential as a safe option for cancer therapy. HIS ISV elicited robust yet transient type I IFN responses in murine NSCLCs, leading to an enrichment of polyfunctional effector Th1 CD4 and cytotoxic CD8 T cells into the tumor. HIS ISV demonstrated enhanced anti-tumor efficacy compared to WT in multiple syngeneic murine models of NSCLC with distinct driver mutations and varying mutational burden. This efficacy was dependent on host type 1 IFN responses and T lymphocytes. HIS ISV overcame resistance to anti-PD-1 in LKB-1 deficient murine NSCLC, resulting in improved overall survival and enduring systemic tumor-specific immunity. These studies provide compelling evidence to support further clinical evaluation of HIS as a novel 'off-the-shelf' ISV strategy for patients with NSCLC refractory to ICI.
RESUMO
BACKGROUND: CD74 is ectopically expressed in many tumors and can regulate tumor immunity. However, there are many gaps in the study of the prognostic value of CD74 expression and immune infiltration in hepatocellular carcinoma (HCC). METHODS: An online tumor database was searched to obtain data on gene/protein expression. Immune infiltration analysis was performed using the Tumor Immune Estimation Resource and Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer databases. Single-cell data were obtained from the Tissue-specific Gene Expression and Regulation, Single-cell Transcriptomes of Tumor Immune Microenvironment and Tumor Immune Single-cell Hub 2 databases. RESULTS: CD74 was highly expressed in HCC patients. HCC patients with high CD74 expression who consumed alcohol or were negative for hepatitis virus had a better prognosis than patients with low CD74 expression. CD74 was mainly enriched in immune response regulation pathways. Both copy number variations in CD74 and CD74 expression patterns affected the infiltration levels of immune cells. Interestingly, CD74 regulated the differentiation of myeloid cells. CD74 in macrophages and dendritic cells (DCs) forms complex networks with malignant cells and hepatic progenitor cell (HPC)-like cells, respectively. High CD74 expression in HPC-like cells and malignant cells significantly decreased the fraction of C-type lectin domain family 9 A (CLEC9A)-cDC1+ DCs and IL-1B+ macrophages, respectively. Their crosstalk subsequently shaped the tumor microenvironment of HCC, possibly through the CD74-MIF axis. Importantly, patients with high CD74 expression presented higher immune scores and achieved good outcomes after receiving immunotherapy. CONCLUSION: High CD74 expression is associated with the abundance of a variety of immune cell types, mediating interactions among tumor and immune cells and shaping the malignant behavior of HCC. In summary, CD74 may be a hallmark for determining the prognosis and immune cell infiltration levels of HCC patients.
Assuntos
Antígenos de Diferenciação de Linfócitos B , Carcinoma Hepatocelular , Antígenos de Histocompatibilidade Classe II , Imunoterapia , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/etiologia , Microambiente Tumoral/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/etiologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Imunoterapia/métodos , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais , Biologia Computacional/métodosRESUMO
The endoparasitoids Chouioa cunea Yang and Tetrastichus septentrionalis Yang (Hymenoptera: Eulophidae) are both gregarious pupal parasitoids of the fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Erebidae). In order to analyze the competitive interactions between both parasitoids exploiting H. cunea, we assessed both extrinsic and intrinsic competition. The search time, oviposition duration, and oviposition frequency were used as evaluation criteria for extrinsic competition. The number of survival days, female ratio, and number of parasitoids emerging from the host were used as evaluation criteria for intrinsic competition. The results indicated that both parasitoid species were able to parasitize hosts that were already parasitized by competitors. The first released species consistently emerged as the superior competitor in multiparasitized hosts. Both parasitoid release orders and time intervals between oviposition affect the competition of parasitoids and the parasitic efficiency. The results emphasize the parasitic abilities of both parasitoid species and provide a basis for future research on competition mechanisms and biological control of H. cunea.
RESUMO
Broad-spectrum antibacterial drugs often lack specificity, leading to indiscriminate bactericidal activity, which can disrupt the normal microbial balance of the host flora and cause unnecessary cytotoxicity during systemic administration. In this study, we constructed a specifically targeted antimicrobial peptide against Staphylococcus aureus by introducing a phage-displayed peptide onto a broad-spectrum antimicrobial peptide and explored its structure-function relationship through one-factor modification. SFK2 obtained by screening based on the selectivity index and the targeting index showed specific killing ability against S. aureus. Moreover, SFK2 showed excellent biocompatibility in mice and piglet, and demonstrated significant therapeutic efficacy against S. aureus infection. In conclusion, our screening of phage-derived heptapeptides effectively enhances the specific bactericidal ability of the antimicrobial peptides against S. aureus, providing a theoretical basis for developing targeted antimicrobial peptides.
RESUMO
The composition of skeletal muscle fiber types affects the quality of livestock meat and human athletic performance and health. L-arginine (Arg), a semi-essential amino acid, has been observed to promote the formation of slow-twitch muscle fibers in animal models. However, the precise molecular mechanisms are still unclear. This study investigates the role of Arg in skeletal muscle fiber composition and mitochondrial function through the mTOR signaling pathway. In vivo, 4-week C56BL/6J male mice were divided into three treatment groups and fed a basal diet supplemented with different concentrations of Arg in their drinking water. The trial lasted 7 weeks. The results show that Arg supplementation significantly improved endurance exercise performance, along with increased SDH enzyme activity and upregulated expression of the MyHC I, MyHC IIA, PGC-1α, and NRF1 genes in the gastrocnemius (GAS) and quadriceps (QUA) muscles compared to the control group. In addition, Arg activated the mTOR signaling pathway in the skeletal muscle of mice. In vitro experiments using cultured C2C12 myotubes demonstrated that Arg elevated the expression of slow-fiber genes (MyHC I and Tnnt1) as well as mitochondrial genes (PGC-1α, TFAM, MEF2C, and NRF1), whereas the effects of Arg were inhibited by the mTOR inhibitor rapamycin. In conclusion, these findings suggest that Arg modulates skeletal muscle fiber type towards slow-twitch fibers and enhances mitochondrial functions by upregulating gene expression through the mTOR signaling pathway.
Assuntos
Arginina , Fibras Musculares Esqueléticas , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Arginina/metabolismo , Arginina/farmacologia , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Linhagem CelularRESUMO
BACKGROUND: Cotton is globally important crop. Verticillium wilt (VW), caused by Verticillium dahliae, is the most destructive disease in cotton, reducing yield and fiber quality by over 50% of cotton acreage. Breeding resistant cotton cultivars has proven to be an efficient strategy for improving the resistance of cotton to V. dahliae. However, the lack of understanding of the genetic basis of VW resistance may hinder the progress in deploying elite cultivars with proven resistance. RESULTS: We planted the VW-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2) in an artificial greenhouse and disease nursery. ZZM2 cotton was subsequently subjected to transcriptome sequencing after Vd991 inoculation (6, 12, 24, 48, and 72 h post-inoculation). Several differentially expressed genes (DEGs) were identified in response to V. dahliae infection, mainly involved in resistance processes, such as flavonoid and terpenoid quinone biosynthesis, plant hormone signaling, MAPK signaling, phenylpropanoid biosynthesis, and pyruvate metabolism. Compared to the susceptible cultivar Junmian No.1 (J1), oxidoreductase activity and reactive oxygen species (ROS) production were significantly increased in ZZM2. Furthermore, gene silencing of cytochrome c oxidase subunit 1 (COX1), which is involved in the oxidation-reduction process in ZZM2, compromised its resistance to V. dahliae, suggesting that COX1 contributes to VW resistance in ZZM2. CONCLUSIONS: Our data demonstrate that the G. hirsutum cultivar ZZM2 responds to V. dahliae inoculation through resistance-related processes, especially the oxidation-reduction process. This enhances our understanding of the mechanisms regulating the ZZM2 defense against VW.
Assuntos
Resistência à Doença , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Gossypium , Doenças das Plantas , Gossypium/genética , Gossypium/microbiologia , Gossypium/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Transcriptoma , VerticilliumRESUMO
Objective To analyze the diagnostic values of H2FPEF and HFA-PEFF scores for heart failure with preserved ejection fraction (HFpEF) and HFpEF complicated with atrial fibrillation (HFpEF-AF) in Chinese patients and explore the related factors. Methods A cross-sectional study was conducted.A total of 835 consecutive HFpEF patients treated in the Department of Geriatric Cardiology,the First Hospital of Lanzhou University from 2009 to 2020 were selected and assigned to a HFpEF-AF group (n=267) and a HFpEF group (n=568) according to the presence of AF or not.HFA-PEFF and H2FPEF scores were used for retrospective diagnosis and the diagnostic consistency of the two scores was assessed.One hundred and thirty-six healthy volunteers with age and sex matching the patients during the same period were selected as healthy controls.The receiver operating characteristic (ROC) curves were established for H2FPEF and HFA-PEFF scores in diagnosing HFpEF-AF and HFpEF,on the basis of which the diagnostic performance of the two scores was evaluated. Results There was no difference in the HFA-PEFF score between the two groups (P=0.070).However,the HFpEF-AF group had higher mean H2FPEF score and higher proportion of patients with the score no less than 6 than the HFpEF group (P<0.001).According to the ROC curves,HFA-PEFF and H2FPEF scores demonstrated high performance in diagnosing all HFpEF patients,with the area under the curve (AUC) of 0.892 and 0.922 and the optimal cut-offs of 4 and 4,respectively.The HFA-PEFF score showed similar performance in diagnosing HFpEF and HFpEF-AF,with the AUC of 0.899 and 0.911,respectively.The H2FPEF score had higher performance in diagnosing HFpEF-AF (AUC of approximately 1.000) and low performance in diagnosing HFpEF (AUC of 0.885). Conclusions The HFA-PEFF score is applicable in the diagnosis of both HFpEF and HFpEF-AF.The H2FPEF score may underestimate HFpEF in Chinese patients,and its applicability in the Chinese patients with HFpEF alone remains to be investigated.
Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Volume Sistólico , Humanos , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/complicações , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Estudos Transversais , Masculino , Feminino , Idoso , Estudos Retrospectivos , Curva ROC , Pessoa de Meia-Idade , Povo Asiático , População do Leste AsiáticoRESUMO
Although the pathogenesis of rheumatoid arthritis (RA) remains unclear, an increasing number of studies have confirmed that pyroptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) is an important factor affecting the progression of RA. Periplogenin (PPN) is a natural cardiac glycoside; reportedly, it exerts anti-inflammatory and analgesic effects in diseases by inhibiting cell growth and migration. This study aimed to determine the effect of PPN on the growth, migration, and invasion of RA-FLS and the potential mechanism of pyroptosis regulation. We discovered that PPN could inhibit the migration and invasion abilities of RA-FLS and block their growth cycle, down-regulate the secretion and activation of NLRP3, Caspase-1, GSDMD, IL-1ß, and IL-18, and reduce the number of pyroptosis. In summary, PPN inhibited pyroptosis, reduced the release of inflammatory factors, and improved RA-FLS inflammation by regulating the NLRP3/Caspase-1/GSDMD signaling pathway.
Assuntos
Artrite Reumatoide , Fibroblastos , Piroptose , Transdução de Sinais , Sinoviócitos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Caspase 1/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/patologiaRESUMO
Deoxynivalenol (DON) is a prevalent toxin causing severe liver damage through hepatocellular oxidative stress. However, the underlying mechanisms and effective therapeutic approaches remain unknown. Here, the unique role of the xenobiotic metabolism factor pregnane X receptor (PXR) in mediating DON-induced hepatocellular oxidative stress is investigated. Treatment with the PXR agonist 3-indole-propionic acid (IPA) alleviates DON-induced oxidative stress and liver injury both in vitro and in vivo. Mechanistically, it is discovered for the first time that PXR agonist IPA directly transactivates the m6A demethylase FTO expression, leading to site-specific demethylation and decreased abundance of YTHDC1-bound Malat1 lncRNA at single-nucleotide resolution. The diminished m6A modification of Malat1 lncRNA reduces its stability and augments antioxidant pathways governed by NRF2, consequently mitigating DON-induced liver injury. Furthermore, Malat1 knockout mice exhibit decreased DON-induced liver injury, emphasizing the role of Malat1 lncRNA in oxidative stress. Collectively, the findings establish that PXR-mediated m6A-dependent Malat1 lncRNA expression determines hepatocyte oxidative stress via m6A demethylase FTO, providing valuable insights into the potential mechanisms underlying DON-induced liver injury and offers potential therapeutic strategies for its treatment.
Assuntos
Desmetilação , Camundongos Knockout , Estresse Oxidativo , Receptor de Pregnano X , RNA Longo não Codificante , Tricotecenos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Camundongos , Tricotecenos/toxicidade , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/efeitos dos fármacos , HumanosRESUMO
The pervasive employment of antibiotics has engendered the advent of drug-resistant bacteria, imperiling the well-being and health of both humans and animals. Infections precipitated by such multi-resistant bacteria, especially those induced by methicillin-resistant Staphylococcus aureus (MRSA), pervade hospital settings, constituting a grave menace to patient vitality. Antimicrobial peptides (AMPs) have garnered considerable attention as a potent countermeasure against multidrug resistant bacteria. In preceding research endeavors, an insect-derived antimicrobial peptide is identified that, while possessing antimicrobial attributes, manifested suboptimal efficacy against drug-resistant Gram-positive bacteria. To ameliorate this issue, this work enhances the antimicrobial capabilities of the initial ß-hairpin AMPs by substituting the structural sequence of the original AMPs with variant lengths of hydrophobic amino acid-hydrophilic amino acid repeat units. Throughout this endeavor, this work has identified a number of peptides that possess highly effective antibacterial characteristics against a wide range of bacteria. Additionally, some of these peptides have the ability to self-assemble into nanofibers, which then build networks in a distinctive manner to capture bacteria. Consequently, they represent prospective antibiotic alternatives for addressing wound infections engendered by drug-resistant bacteria.
Assuntos
Antibacterianos , Nanofibras , Infecção dos Ferimentos , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Testes de Sensibilidade Microbiana , Animais , Peptídeos/química , Peptídeos/farmacologiaRESUMO
The decomposition of ammonia-N to environmental-friendly N2 remains a fundamental problem for water treatment. We proposed a way to selectively and efficiently oxidize ammonia to N2 through an integrated photoeletrocatalysischlorine reactions (PECCl) system based on a bifunctional TiO2 nanotube photoanode. The ·OH and HClO can be simultaneously generated on the TiO2 nanotube photoanode in this system, which can in situ form ClO· for efficient ammonia removal. Compared with electrochemicalchlorine (EC-Cl), photocatalysischlorine (PC-Cl) and photoelectrocatalysis (PEC) systems, the PEC-Cl system exhibited much higher electrocatalytic activity due to the synergetic effect of photoelectrocatalyst and electrocatalyst in bifunctional TiO2 nanotube electrode. The removal efficiency of ammonia-N and total-N reached 100.0 % and 93.3 % at 0.3 V (vs Ag/AgCl) in the PEC-Cl system. Moreover, the system was efficient under various pH conditions. The reactions between ClO-/ClO· and the N-containing intermediates contributed to the high performance of the system, which expanded the reactions from the electrode surface to the electrolyte. Furthermore, radical scavenging and free chlorine determination experiments confirmed that ClO· and free chlorine were the main active species that enabled the ammonia oxidation. This study presents new understanding on the role of active species for ammonia removal in wastewater.
RESUMO
Excessive discharge of nitrogen-containing chemical products into the natural water environment leads to the serious environmental problem of nitrate-nitrogen pollution, threatening the ecological balance and human health. In this study, we propose an efficient denitrification electrochemical method utilizing iron-doped zeolite imidazolium framework derived defective nitrogen-doped carbon (d-FeNC) catalysts. The d-FeNC catalyst exhibited 97 % nitrate removal efficiency and 94 % total nitrogen (TN) removal, and the reaction rate constant was increased from 0.73 h-1 of the Fe-undoped electrocatalyst (d-NC) to 1.11 h-1. The successful synthesis of d-FeNC with carbon defect sites and encapsulated Fe was confirmed by in-depth characterization. In situ electron paramagnetic resonance (EPR) analysis in conjunction with cyclic voltammetry (CV) tests confirmed the carbon substrates with defect enhanced the trapping of atomic hydrogen (H*) on the catalyst surface. Density functional theory (DFT) calculations clarified the doping of Fe facilitated the adsorption of nitrate, resulting in contact of H* with nitrate on the catalyst surface. In the synergy of the defective state organic framework and metal Fe, H* and nitrate realized a collision process. The electrochemical denitrification system achieved an excellent nitrate removal capacity of 7587 mgN·g-1cat in high-concentration nitrate solution and showed excellent stability under various conditions. Overall, this study underscores the potential of defective iron-doped carbon catalysts for efficient electrocatalytic denitrification, providing a promising approach for sustainable wastewater treatment.
RESUMO
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
RESUMO
BACKGROUND: Malunion of tibial pilon fracture, especially with a large cartilage loss of the tibial plafond, is a tough clinical conundrum. This study describes a joint-preserving technique that mainly involves corrective intraarticular osteotomy and osteoperiosteal iliac autograft transplantation for treating these generally considered unreconstructable tibial plafond. METHODS: Sixteen patients with an average age of 33.6 years who were treated with this joint-preserving method between 2013 and 2020 were retrospectively analyzed. Ankle distraction was applied in all patients. Additional osteochondral autograft transplantation for talus was performed in 4 patients and supramalleolar osteotomy in 2 patients. The visual analog scale (VAS) score, the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot score, the 36-Item Short Form Health Survey (SF-36) score, and the ankle range of motion (ROM) were used for outcome analysis. Radiographic assessment was conducted, and the complications were recorded. RESULTS: At a mean follow-up of 41.1 months, the mean VAS, AOFAS, and SF-36 scores improved from 6.3, 47.6, and 38.0 to 1.7, 84.4, and 70.8, respectively (P < .001 for each). The ankle ROM improved from 27.5 to 32.2 degrees (P = .023). The mean area of ilium blocks was 3.5 cm2, and the mean external fixation time was 94.1 days. Radiographs showed that good osteointegration was found in all patients and no significant progression of osteoarthritis in 15 patients. The major complications included poor incision healing in 2 patients and severe ankle stiffness in 2 patients, with one of them developing considerable varus-type osteoarthritis but reporting no pain. No deep infection, nonunion, or malunion occurred, and no secondary arthrodesis was performed during the final follow-up. CONCLUSION: Osteoperiosteal iliac autograft transplantation might be an alternative surgical option for reconstructing unreconstructable malunited pilon fractures with a large cartilage loss of the tibial plafond in young patients. LEVEL OF EVIDENCE: Level IV, case series.
Assuntos
Fraturas do Tornozelo , Osteoartrite , Fraturas da Tíbia , Humanos , Adulto , Estudos Retrospectivos , Autoenxertos , Ílio , Tíbia/cirurgia , Fraturas da Tíbia/cirurgia , Fraturas da Tíbia/complicações , Fraturas do Tornozelo/complicações , Articulação do Tornozelo/cirurgia , Osteoartrite/cirurgia , Resultado do TratamentoRESUMO
Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (ß-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 µM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.
Assuntos
Doença de Parkinson , Ratos , Camundongos , Animais , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ferro/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Dopamina/metabolismo , Senescência Celular , Modelos Animais de DoençasRESUMO
Gut microbiota disturbance and systemic inflammation have been implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD). How the alteration of gut microbiota results in neuropathological events in PD remains elusive. In this study, we explored whether and how environmental insults caused early neuropathological events in the substantia nigra (SN) of a PD mouse model. Aged (12-month-old) mice were orally administered rotenone (6.25 mg·kg-1·d-1) 5 days per week for 2 months. We demonstrated that oral administration of rotenone to ageing mice was sufficient to establish a PD mouse model and that microglial activation and iron deposition selectively appeared in the SN of the mice prior to loss of motor coordination and dopaminergic neurons, and these events could be fully blocked by microglial elimination with a PLX5622-formulated diet. 16 S rDNA sequencing analysis showed that the gut microbiota in rotenone-treated mice was altered, and mice receiving faecal microbial transplantation (FMT) from ageing mice treated with rotenone for 2 months exhibited the same pathology in the SN. We demonstrated that C-X-C motif chemokine ligand-1 (CXCL1) was an essential molecule, as intravenous injection of CXCL1 mimicked almost all the pathology in serum and SN induced by oral rotenone and FMT. Using metabolomics and transcriptomics analyses, we identified the PPAR pathway as a key pathway involved in rotenone-induced neuronal damage. Inhibition of the PPARγ pathway was consistent in the above models, whereas its activation by linoleic acid (60 mg·kg-1·d-1, i.g. for 1 week) could block these pathological events in mice intravenously injected with CXCL1. Altogether, these results reveal that the altered gut microbiota resulted in neuroinflammation and iron deposition occurring early in the SN of ageing mice with oral administration of rotenone, much earlier than motor symptoms and dopaminergic neuron loss. We found that CXCL1 plays a crucial role in this process, possibly via PPARγ signalling inhibition. This study may pave the way for understanding the "brain-gut-microbiota" molecular regulatory networks in PD pathogenesis. The aged C57BL/6 male mice with rotenone intragastric administration showed altered gut microbiota, which caused systemic inflammation, PPARγ signalling inhibition and neuroinflammation, brain iron deposition and ferroptosis, and eventually dopaminergic neurodegeneration in PD.
Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Masculino , Rotenona/toxicidade , Doenças Neuroinflamatórias , PPAR gama , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia , Substância Negra/patologia , Neurônios Dopaminérgicos/patologia , Inflamação/patologia , Ferro , Modelos Animais de DoençasRESUMO
Thirty new tricyclicmatrinic derivatives were successively synthesized and evaluated for their inhibitory activity on the accumulation of triglycerides (TG) in AML12 cells, using 12 N-m-trifluoromethylbenzenesulfonyl matrine (1) as the hit compound. Among the analogues, compound 7n possessing 11-trimethylbutylamine quaternary exerted the highest in vitro TG-lowering potency, as well as a good safety profile. 7n significantly attenuated the hepatic injury and steatosis, and ameliorated dyslipidemia and dysglycemia in the mice with non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet. Primary mechanism study revealed that upregulation of peroxisome proliferator-activated receptors α (PPARα)-carnitine palmitoyltransferase 1A (CPT1A) pathway mediated the efficacy of 7n. Our study provides powerful information for developing this kind of compound into a new class of anti-NAFLD candidates, and compound 7n is worthy of further investigation as an ideal lead compound.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Matrinas , Triglicerídeos/metabolismo , Fígado/metabolismo , PPAR alfa/metabolismo , Camundongos Endogâmicos C57BLRESUMO
The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infected a substantial proportion of Chinese population, and understanding the factors underlying the severity of the disease and fatality is valuable for future prevention and clinical treatment. We recruited 64 patients with invasive ventilation for COVID-19 and performed metatranscriptomic sequencing to profile host transcriptomic profiles, plus viral, bacterial, and fungal content, as well as virulence factors and examined their relationships to 28-day mortality were examined. In addition, the bronchoalveolar lavage fluid (BALF) samples from invasive ventilated hospital/community-acquired pneumonia patients (HAP/CAP) sampled in 2019 were included for comparison. Genomic analysis revealed that all Omicron strains belong to BA.5 and BF.7 sub-lineages, with no difference in 28-day mortality between them. Compared to HAP/CAP cohort, invasive ventilated COVID-19 patients have distinct host transcriptomic and microbial signatures in the lower respiratory tract; and in the COVID-19 non-survivors, we found significantly lower gene expressions in pathways related viral processes and positive regulation of protein localization to plasma membrane, higher abundance of opportunistic pathogens including bacterial Alloprevotella, Caulobacter, Escherichia-Shigella, Ralstonia and fungal Aspergillus sydowii and Penicillium rubens. Correlational analysis further revealed significant associations between host immune responses and microbial compositions, besides synergy within viral, bacterial, and fungal pathogens. Our study presents the relationships of lower respiratory tract microbiome and transcriptome in invasive ventilated COVID-19 patients, providing the basis for future clinical treatment and reduction of fatality.