Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Sensors (Basel) ; 24(19)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39409443

RESUMO

An all-optical crosstalk suppression scheme is desirable for wavelength and space division multiplexing optical networks by improving the performance of the corresponding nodes. We put forward a scheme comprising double-stage semiconductor optical amplifiers (SOAs) for wavelength-preserving crosstalk suppression. The wavelength position of the degenerate pump in the optical phase conjugation (OPC) is optimized for signal-to-crosstalk ratio (SXR) improvement. The crosstalk suppression performance of the double-stage SOA scheme for 20 Gb/s quadrature phase shift keying (QPSK) signals is investigated by means of simulations, including the input SXR range and the crosstalk wavelength deviation. For the case with identical-frequency crosstalk, the double-stage SOA scheme can achieve equivalent SXR improvement of 1.5 dB for an input SXR of 10 dB. Thus, the double-stage SOA scheme proposed here is more suitable for few-mode fiber systems and networks.

2.
Front Endocrinol (Lausanne) ; 15: 1426913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319258

RESUMO

Introduction: The role of immune cells in the pathogenesis and advancement of diabetic nephropathy (DN) is crucial. The objective of this study was to identify immune-cell-related biomarkers that could potentially aid in the diagnosis and management of DN. Methods: The GSE96804 dataset was obtained from the Gene Expression Omnibus (GEO) database. Then, screen for intersections between differentially expressed genes (DEGs) and immune-related genes (IRGs). Identify core genes through protein-protein interaction (PPI) networks and the Cytoscape plugin. Subsequently, functional enrichment analysis was conducted. In addition, ROC analysis is performed to accurately identify diagnostic biomarkers. Apply the CIBERSORT algorithm to evaluate the proportion of immune cell infiltration. Finally, the mRNA, protein, and immunofluorescence expression of the biomarker was validated in the DN rat model. Results: The study yielded 74 shared genes associated with DN. Enrichment analysis indicated significant enrichment of these genes in focal adhesion, the humoral immune response, activation of the immune response, Cytokine-cytokine receptor interaction, and IL-17 signaling pathway. The optimal candidate gene VCAM1 was identified. The presence of VCAM1 in DN was further validated using the ROC curve. Analysis of immune cell infiltration matrices revealed a high abundance of monocytes, naïve B cells, memory B cells, and Macrophages M1/M2 in DN tissues. Correlation analysis identified one hub biomarker associated with immune-infiltrated cells in DN. Furthermore, our findings were validated through in vivo RT qPCR, WB, and IF techniques. Conclusions: Our research indicates that VCAM1 is a signature gene associated with DN and is linked to the progression, treatment, and prognosis of DN. A comprehensive examination of immune infiltration signature genes may offer new perspectives on the clinical diagnosis and management of DN.


Assuntos
Biomarcadores , Nefropatias Diabéticas , Molécula 1 de Adesão de Célula Vascular , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Animais , Ratos , Biomarcadores/metabolismo , Biomarcadores/análise , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Humanos , Masculino , Ratos Sprague-Dawley , Mapas de Interação de Proteínas , Perfilação da Expressão Gênica , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/genética
3.
Angew Chem Int Ed Engl ; : e202414879, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325096

RESUMO

Mild photothermal therapy (MPTT) has emerged as a promising therapeutic modality for attenuating thermal damage to the normal tissues surrounding tumors, while the heat-induced upregulation of heat shock proteins (HSPs) greatly compromises the curative efficacy of MPTT by increasing cellular thermo-tolerance. Ferroptosis has been identified to suppress the overexpression of HSPs by the accumulation of lipid peroxides and reactive oxygen species (ROS), but is greatly restricted by overexpressed glutathione (GSH) in tumor microenvironment and undesirable ROS generation efficiency. Herein, a synergistic strategy based on the mutual enhancement of MPTT and ferroptosis is proposed for cleaving HSPs to recover tumor cell sensitivity. A facile method for fabricating a series of Fe-based metal-quinone networks (MQNs) by coordinated assembly is proposed and the representative FTP MQNs possess high photothermal conversion efficiency (69.3%). Upon 808 nm laser irradiation, FTP MQNs not only trigger effective MPTT to induce apoptosis but more significantly, potentiate Fenton reaction and marked GSH consumption to boost ferroptosis, and the reinforced ferroptosis effect in turn can alleviate the thermal resistance by declining the HSP70 defense and reducing ATP levels. This study provides a valuable rationale for constructing a large library of MQNs for achieving mutual enhancement of MPTT and ferroptosis.

4.
Chem Commun (Camb) ; 60(78): 10898-10901, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39253897

RESUMO

Coulombic efficiency (CE) and rate capability are crucial parameters for advanced secondary batteries. Herein, for the first time, we report controllable amorphization and morphology engineering on mixed-valence Fe(II,III)-MOFs from the crystalline to amorphous state and micro-clustered to hollow nano-spherical geometry through valence manipulation by a dissolved oxygen-mediated pathway. The disordered structure and the hollow nanostructure can endow the MOFs with the highest initial CE (>80%) to date for MOF electrodes, and ultrafast and super-stable near-pseudocapacitance lithium storage. These findings can provide new ideas for the engineering of MOF systems for application in LIBs.

5.
Intensive Crit Care Nurs ; 86: 103834, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299169

RESUMO

OBJECTIVE: To systematically assess the prevalence and risk factors for subsyndromal delirium (SSD) in the intensive care unit. DESIGN: A systematic reviewand meta-analysis. METHODOLOGY: This systematic review and meta-analysis was conducted in eight databases, including PubMed, Web of Science, Ovid,Scopus, China Knowledge Resource Integrated Database, Wanfang Database,Weipu Database and Chinese Biomedical Database. All original observational studies of subsyndromal delirium in the ICU were included, with languages limited to English and Chinese. The methodological quality was assessed by the Newcastle-Ottawa Scale and the Agency for Healthcare Research and Quality recommendation checklist. Meta-analysis was performed using Stata software (version 18.0). RESULT: A total of 27 studies involving 7,286 participants were included in this review. The pooled prevalence of SSD was 32.4 % (95 %CI: 27.1 %-37.7 %).Fourteen studies reported 34 independent risk factors, and the following ten factors were significantly associated with SSD: older age, higher Acute Physiology and Chronic Health Evaluation II (APACHE II) score, lower Mini-mental Status Examination (MMSE) score, pain, mechanical ventilation, hypoproteinemia, blood transfusion, longer ICU stay, infection, and physical restraint. CONCLUSION: We conducted a systematic review and meta-analysis to evaluate the prevalence of SSD in the ICU and identified 10 risk factors associated with SSD. However, the studies have significant heterogeneity, future research should be conducted in multicenter with large samples to strengthen the current evidence. IMPLICATIONS FOR CLINICAL PRACTICE: Subsyndromal delirium is a frequently occurring adverse event in the ICU, so it is recommended that clinicians and nurses incorporate the assessment of SSD into their daily routine. In this study, we also identified ten risk factors associated with SSD, and some of which could be modified or intervened. These findings provide a basis for ICU medical staff to identify patients at high risk of SSD and then implement individualized interventions to reduce the prevalence of SSD.

6.
Sci Rep ; 14(1): 19994, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198626

RESUMO

Although the relationship between hypertension and hyperuricemia is widely recognized, there is still a relative lack of research on prehypertensive individuals and the individual associations of systolic and diastolic blood pressure with the risk of hyperuricemia. From 2011 to 2016, we conducted a study on 53,323 individuals at Wuhu City Hospital in China. Based on initial blood pressure readings, participants were categorized into normal, prehypertension, or hypertension groups. We used Cox regression to analyze the associations with baseline factors. In subgroup analyses, systolic and diastolic pressures were treated as continuous variables, and their relationship with the risk of hyperuricemia was examined using restricted cubic spline analysis. The risk increased in the prehypertension and hypertension groups compared to the normal blood pressure group, with hazard ratios of 1.192 and 1.350, respectively. For each unit increase in blood pressure, the risk of hyperuricemia rose by 0.8% (systolic) and 0.9% (diastolic), especially when blood pressure levels exceeded 115/78 mmHg. Additionally, we observed that factors such as gender, alcohol consumption habits, obesity, and dyslipidemia might further influence this association. These findings emphasize the importance of early risk assessment and intervention in these patient populations in clinical practice.


Assuntos
Pressão Sanguínea , Hipertensão , Hiperuricemia , Humanos , Hiperuricemia/epidemiologia , Masculino , Feminino , China/epidemiologia , Pessoa de Meia-Idade , Hipertensão/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Adulto , Idoso
7.
Angew Chem Int Ed Engl ; : e202413661, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166420

RESUMO

Single-atom nanozymes (SAzymes) with ultrahigh atom utilization efficiency have been extensively applied in reactive oxygen species (ROS)-mediated cancer therapy. However, the high energy barriers of reaction intermediates on single-atom sites and the overexpressed antioxidants in the tumor microenvironment restrict the amplification of tumor oxidative stress, resulting in unsatisfactory therapeutic efficacy. Herein, we report a multi-enzyme mimetic MoCu dual-atom nanozyme (MoCu DAzyme) with various catalytic active sites, which exhibits peroxidase, oxidase, glutathione (GSH) oxidase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mimicking activities. Compared with Mo SAzyme, the introduction of Cu atoms, formation of dual-atom sites, and synergetic catalytic effects among various active sites enhance substrate adsorption and reduce the energy barrier, thereby endowing MoCu DAzyme with stronger catalytic activities. Benefiting from the above enzyme-like activities, MoCu DAzyme can not only generate multiple ROS, but also deplete GSH and block its regeneration to trigger the cascade amplification of oxidative stress. Additionally, the strong optical absorption in the near-infrared II bio-window endows MoCu DAzyme with remarkable photothermal conversion performance. Consequently, MoCu DAzyme achieves high-efficiency synergistic cancer treatment incorporating collaborative catalytic therapy and photothermal therapy. This work will advance the therapeutic applications of DAzymes and provide valuable insights for nanocatalytic cancer therapy.

8.
Chem Biodivers ; : e202401542, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193815

RESUMO

The hypoxia-inducible factor-1α (HIF-1α) pathway has been implicated in tumor angiogenesis, growth, and metastasis. Therefore, the inhibition of this pathway is an important therapeutic target for cancer. Thiazole derivatives have been reported to have diverse biological activities, especially in terms of anti-tumor. Consequently, we hypothesized that the introduction of a thiazole functional group in PD was likely to improve the biological potency. Here, three series of PD derivatives containing a thiazole moiety were synthesized, including (a) sulfonyl-containing thiazole derivatives (5 a-l), (b) urea-containing thiazole derivatives (7 a-i), and (c) thiourea-containing thiazole derivatives (9 a-i), and evaluated for HIF-1α inhibitory activity using a Hep3B cell-based luciferase reporter assay. The results showed that about 1/3 of the target compounds showed moderate or strong HIF-1α inhibitory activity, among which compounds 5 d and 7 b showed the strongest inhibitory activity with IC50 values of 17.37 and 6.42 µM, respectively, and did not show any significant cytotoxicity. Western blot assay results indicated that these two compounds exhibited more potent inhibition, compared with panaxadiol, of the expression of HIF-1α protein in Hep3B cells at a concentration of 50 µM. Molecular docking experiments were also performed to investigate the structure-activity relationship. Compounds 5 d and 7 b can be used as leads for further study and development of novel antitumor drugs.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39205643

RESUMO

Diabetic nephropathy (DN) is recognized as one of the primary causes of chronic kidney disease and end-stage renal disease. Vaccarin (VAC) confers favorable effects on cardiovascular and metabolic diseases, including type 2 diabetes mellitus (T2DM). Nonetheless, the potential role and mechanism of VAC in the etiology of DN have yet to be completely elucidated. In this study, a classical mouse model of T2DM is experimentally induced via a high-fat diet (HFD)/streptozocin (STZ) regimen. Renal histological changes are assessed via H&E staining. Masson staining and immunohistochemistry (IHC) are employed to assess renal fibrosis. RT-PCR is utilized to quantify the mRNA levels of renal fibrosis, oxidative stress and inflammation markers. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as the content of glutathione peroxidase (GSH-Px), are measured. The protein expressions of collagen I, TGF-ß1, α-SMA, E-cadherin, Nrf2, catalase, SOD3, SOD2, SOD1, p-ERK, p-EGFR (Y845), p-EGFR (Y1173), p-NFκB P65, t-ERK, t-EGFR and t-NFκB P65 are detected by western blot analysis. Our results reveal that VAC has a beneficial effect on DN mice by improving renal function and mitigating histological damage. This is achieved through its inhibition of renal fibrosis, inflammatory cytokine overproduction, and ROS generation. Moreover, VAC treatment effectively suppresses the process of epithelial-mesenchymal transition (EMT), a crucial characteristic of renal fibrosis, in high glucose (HG)-induced HK-2 cells. Network pharmacology analysis and molecular docking identify epidermal growth factor receptor (EGFR) as a potential target for VAC. Amino acid site mutations reveal that Lys-879, Ile-918, and Ala-920 of EGFR may mediate the direct binding of VAC to EGFR. In support of these findings, VAC reduces the phosphorylation levels of both EGFR and its downstream mediator, extracellular signal-regulated kinase 1/2 (ERK1/2), in diabetic kidneys and HG-treated HK-2 cells. Notably, blocking either EGFR or ERK1/2 yields renal benefits similar to those observed with VAC treatment. Therefore, this study reveals that VAC attenuates renal damage via inactivation of the EGFR/ERK1/2 signaling axis in T2DM patients.

10.
Nano Lett ; 24(35): 10813-10819, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39164007

RESUMO

An on-chip asymmetric directional coupler (DC) can convert fundamental modes to higher-order modes and is one of the core components of mode-division multiplexing (MDM) technology. In this study, we propose that waveguides of the asymmetric DC can be trimmed by silicon ion implantation to tune the effective refractive index and facilitate mode conversion into higher-order modes. Through this method of tuning, transmission changes of up to 18 dB have been realized with one ion implantation step. In addition, adjusting the position of the ion implantation on the waveguide can provide a further degree of control over the transmission into the resulting mode. The results of this work present a promising new route for the development of high-efficiency, low-loss mode converters for integrated photonic platforms, and aim to facilitate the application of MDM technology in emerging photonic neuromorphic computing.

11.
iScience ; 27(6): 110111, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38957790

RESUMO

Osteophyte formation, a key indicator of osteoarthritis (OA) severity, remains poorly understood in its relation to gut microbiota and metabolites in knee osteoarthritis (KOA). We conducted 16S rDNA sequencing and untargeted metabolomics on fecal and serum samples from 20 healthy volunteers, 80 KOA patients in Guangdong, and 100 in Inner Mongolia, respectively. Through bioinformatics analysis, we identified 3 genera and 5 serum metabolites associated with KOA osteophyte formation. Blautia abundance negatively correlated with meat, cheese, and bean consumption. The 5 serum metabolites negatively correlated with dairy, beef, cheese, sugar, and salt intake, yet positively with age and oil consumption. Higher Blautia levels in the gut may contribute to KOA osteophyte formation, with serum metabolites LTB4 and PGD2 potentially serving as biomarkers. KOA patients in Inner Mongolia exhibited lower Blautia levels and reduced expression of 5 serum metabolites, possibly due to cheese consumption habits, resulting in less osteophyte formation.

12.
PeerJ ; 12: e17667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006029

RESUMO

Advances in understanding the pathological mechanisms of breast cancer have resulted in the emergence of novel therapeutic strategies. However, triple-negative breast cancer (TNBC), a molecular subtype of breast cancer with a poor prognosis, lacks classical and general therapeutic targets, hindering the clinical application of several therapies to breast cancer. As insights into the unique immunity and molecular mechanisms of TNBC have become more extensive, immunotherapy has gradually become a valuable complementary approach to classical radiotherapy and chemotherapy. CD8+ cells are significant actors in the tumor immunity cycle; thus, research on TNBC immunotherapy is increasingly focused in this direction. Recently, CD8+ tissue-resident memory (TRM) cells, a subpopulation of CD8+ cells, have been explored in relation to breast cancer and found to seemingly play an undeniably important role in tumor surveillance and lymphocytic infiltration. In this review, we summarize the recent advances in the mechanisms and relative targets of CD8+ T cells, and discuss the features and potential applications of CD8+ TRM cells in non-luminal breast cancer immunotherapy.


Assuntos
Memória Imunológica , Linfócitos T Citotóxicos , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Linfócitos T Citotóxicos/imunologia , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Células T de Memória/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
13.
Genes Dis ; 11(5): 101061, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39071110

RESUMO

Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.

14.
Bioorg Med Chem Lett ; 111: 129880, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996941

RESUMO

Viral infectivity factor (Vif) has been recognized as a new therapeutic target for human immunodeficiency virus-1 (HIV-1) infected patients. In our previous work, we have synthesized a novel class of Vif inhibitors with 2-amino-N-(5-hydroxy-2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide scaffold, which show obvious activity in HIV-1 infected cells and are also effective against drug-resistant strains. Proteolytic targeting chimera (PROTAC) utilizes the ubiquitin-proteasome system to degrade target proteins, which is well established in the field of cancer, but the antiviral PROTAC molecules are rarely reported. In order to explore the effectiveness of PROTAC in the antiviral area, we designed and synthesized a series of degrader of HIV-1 Vif based on 2-amino-N-(5-hydroxy-2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide scaffold. Among them, L15 can degrade Vif protein obviously in a dose-dependent manner and shows certain antivirus activity. Meanwhile, molecular dynamics simulation indicated that the ternary complex formed by L15, Vif, and E3 ligase adopted a reasonable binding mode and maintained a stable interaction. This provided a molecular basis and prerequisite for the selective degradation of the Vif protein by L15. This study reports the HIV-1 Vif PROTAC for the first time and represents the proof-of-concept of PROTACs-based antiviral drug discovery in the field of HIV/ acquired immune deficiency syndrome (AIDS).


Assuntos
Fármacos Anti-HIV , HIV-1 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , HIV-1/efeitos dos fármacos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Benzamidas/farmacologia , Benzamidas/química , Benzamidas/síntese química , Descoberta de Drogas , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Proteólise/efeitos dos fármacos , Simulação de Dinâmica Molecular
15.
Mikrochim Acta ; 191(8): 443, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955844

RESUMO

CoFe@C was first prepared by calcining the precursor of CoFe-metal-organic framework-74 (CoFe-MOF-74), then an electrochemical sensor for the determination of neohesperidin dihydrochalcone (NHDC) was constructed, which was stemmed from the novel CoFe@C/Nafion composite film modified glassy carbon electrode (GCE). The CoFe@C/Nafion composite was verified by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS) was used to evaluate its electrical properties as a modified material for an electrochemical sensor. Compared with CoFe-MOF-74 precursor modified electrode, CoFe@C/Nafion electrode exhibited a great synergic catalytic effect and extremely increased the oxidation peak signal of NHDC. The effects of various experimental conditions on the oxidation of NHDC were investigated and the calibration plot was tested. The results bespoken that CoFe@C/Nafion GCE has good reproducibility and anti-interference under the optimal experimental conditions. In addition, the differential pulse current response of NHDC was linear with its concentration within the range 0.08 ~ 20 µmol/L, and the linear regression coefficient was 0.9957. The detection limit was as low as 14.2 nmol/L (S/N = 3). In order to further verify the feasibility of the method, it was successfully used to determine the content of NHDC in Chinese medicine, with a satisfactory result, good in accordance with that of high performance liquid chromatography (HPLC).


Assuntos
Chalconas , Cobalto , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Estruturas Metalorgânicas , Cobalto/química , Estruturas Metalorgânicas/química , Chalconas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Hesperidina/análogos & derivados , Hesperidina/análise , Hesperidina/química , Polímeros de Fluorcarboneto/química , Oxirredução , Carbono/química , Reprodutibilidade dos Testes , Ferro/química
16.
J Am Chem Soc ; 146(31): 21496-21508, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39073804

RESUMO

Ultrasound (US)-mediated piezocatalytic tumor therapy has attracted much attention due to its notable tissue-penetration capabilities, noninvasiveness, and low oxygen dependency. Nevertheless, the efficiency of piezocatalytic therapy is limited due to an inadequate piezoelectric response, low separation of electron-hole (e--h+) pairs, and complex tumor microenvironment (TME). Herein, an ultrathin two-dimensional (2D) sulfur-vacancy-engineered (Sv-engineered) Cu@SnS2-x nanosheet (NS) with an enhanced piezoelectric effect was constructed via the heterovalent substitution strategy of Sn4+ by Cu2+. The introduction of Cu2+ ion not only causes changes in the crystal structure to increase polarization but also generates rich Sv to decrease band gap from 2.16 to 1.62 eV and inhibit e--h+ pairs recombination, collectively leading to the highly efficient generation of reactive oxygen species under US irradiation. Moreover, Cu@SnS2-x shows US-enhanced TME-responsive Fenton-like catalytic activity and glutathione depletion ability, further aggravating the oxidative stress. Both in vitro and in vivo results prove that the Sv-engineered Cu@SnS2-x NSs can significantly kill tumor cells and achieve high-efficiency piezocatalytic tumor therapy in a biocompatible manner. Overall, this study provides a new avenue for sonocatalytic therapy and broadens the application of 2D piezoelectric materials.


Assuntos
Cobre , Nanoestruturas , Enxofre , Cobre/química , Enxofre/química , Humanos , Camundongos , Animais , Nanoestruturas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sulfetos/química , Microambiente Tumoral/efeitos dos fármacos , Compostos de Estanho/química , Catálise , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Terapia por Ultrassom , Ensaios de Seleção de Medicamentos Antitumorais
17.
Front Nutr ; 11: 1291799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919389

RESUMO

Introduction: The study assessed the correlation and concordance of 25-hydroxyvitamin D [25(OH)D] levels in capillary and venous plasma collected simultaneously after vitamin D3 supplementation in 42 healthy adults. They were randomly divided into three groups by random number table method. Group A took 1,000 IU vitamin D3 daily, group B took 10,000 IU vitamin D3 every 10 days, and group C took 30,000 IU vitamin D3 every 30 days until the end of the 12th month. Venous blood serum 25(OH)D level was detected by chemiluminescence immunoassay (CLIA) and mass spectrometry (LC-MS) at day 1, day 14, day 28, month 6, and month 12 respectively, the capillary blood serum 25(OH)D level was detected by chemiluminescence immunoassay (CLIA) at the same time. Pearson correlation analysis and linear regression analysis were employed to investigate the relationship and transformation equation between the findings of the two samples and the results obtained from different detection methods within the same sample. The Bland-Altman method, Kappa analysis, and receiver operating characteristic (ROC) curve were utilized for assessing consistency, sensitivity, and specificity. Results: The three groups all reached a stable peak at 6 months, and the average levels of the three groups were 49.21, 42.50 and 43.025 nmol/L, respectively. The average levels of group A were higher than those of group B and group C (P < 0.001). The mean values of serum 25(OH)D measured by LC-MS and CLIA in 42 healthy adults were 45.32 nmol/L and 49.88 nmol/L, respectively, and the mean values of 25(OH)D measured by LC-MS in capillary blood were 52.03 nmol/L, and the difference was statistically significant (P < 0.001). Pearson correlation analysis showed that the linear fitting formula of scatter data was as follows: venous 25(OH)D concentration (nmol/L) = 1.105 * capillary 25(OH)D concentration -7.532 nmol/L, R2 = 0.625. Good agreement was observed between venous and corrected capillary 25(OH)D levels in clinical diagnosis (Kappa value 0.75). The adjusted serum 25(OH)D in capillary blood had a high clinical predictive value. Conclusions: The agreement between the two methods is good when the measured 25(OH)D level is higher. Standardized capillary blood chemiluminescence method can be used for 25(OH)D detection.

18.
ACS Appl Mater Interfaces ; 16(27): 34962-34972, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934361

RESUMO

Formamidinium lead triiodide quantum dot (FAPbI3 QD) exhibits substantial potential in solar cells due to its suitable band gap, extended carrier lifetime, and superior phase stability. However, despite great attempts toward reconfiguring the surface chemical environment of FAPbI3 QDs, achieving the optimal efficiency of charge carrier extraction and transfer in cells remains a challenge. To circumvent this problem, we selectively introduced Au/FAPbI3 Schottky heterojunctions by reducing Au+ to Au0 and subsequently anchoring them on the surface of FAPbI3 QDs, which acts as a light-harvesting layer and establishes high-speed electron transfer channels (Au dot ↔ Au dot). As a result, the champion photoelectric conversion efficiency of solar cells reached 13.68%, a significant improvement over 11.19% of that of FAPbI3-based solar cells. The enhancement is attributed to efficient and directed electron transfer as well as a more aligned energy level arrangement. This work constructed Au/FAPbI3 QD Schottky heterojunctions, providing a viable strategy to enhance QD electron coupling for high-performance optoelectronic applications.

19.
J Med Chem ; 67(13): 10589-10600, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889052

RESUMO

The immune checkpoint blockade represents a pivotal strategy for tumor immunotherapy. At present, various programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) monoclonal antibodies have been successfully applied to tumor treatment. Additionally, numerous small molecule inhibitors of the PD-1/PD-L1 interaction have also been developed, with some advancing into clinical trials. Here, a novel PD-L1 proteolysis-targeting chimera (PROTAC) library was designed and synthesized utilizing the PD-L1 inhibitor BMS202 and the E3 ligand PG as foundational components. Among these, we identified a highly potent molecule PA8 for PD-L1 degradation in 4T1 cells (DC50 = 0.609 µM). Significantly, compound PA8 potentially inhibits 4T1 cell growth both in vitro and in vivo. Further mechanistic studies revealed that PA8 effectively promoted the immune activation of model mice. Thus, these results suggest that PA8 could be a novel strategy for cancer immunotherapy in the 4T1 tumor model. Although PA8 exhibits weaker degradation activity in some human cancer cells, it still provides a certain basis for further research on PD-L1 PROTAC.


Assuntos
Antineoplásicos , Antígeno B7-H1 , Neoplasias da Mama , Proteólise , Proteólise/efeitos dos fármacos , Animais , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Humanos , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/síntese química , Acetamidas , Piridinas
20.
Small ; 20(43): e2403145, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38881358

RESUMO

Lithium metal batteries (LMBs) with high-voltage nickel-rich cathodes show great potential as energy storage devices due to their exceptional capacity and power density. However, the detrimental parasitic side reactions at the cathode electrolyte interface result in rapid capacity decay. Herein, a polymerizable electrolyte additive, pyrrole-1-propionic acid (PA), which can be in situ electrochemically polymerized on the cathode surface and involved in forming cathode electrolyte interphase (CEI) film during cycling is proposed. The formed CEI film prevents the formation of microcracks in LiNi0.8Co0.1Mn0.1O2 (NCM811) secondary particles and mitigates parasitic reactions. Additionally, the COO- anions of PA promote the acceleration of Li+ transport from cathode particles and increase charging rates. The Li||NCM811 batteries with PA in the electrolyte exhibit a high capacity retention of 83.83% after 200 cycles at 4.3 V, and maintain 80.88% capacity after 150 cycles at 4.6 V. This work provides an effective strategy for enhancing interface stability of high-voltage nickel-rich cathodes by forming stable CEI film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...