Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 13640-13650, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450602

RESUMO

Sluggish sulfur redox kinetics and incessant shuttling of lithium polysulfides (LiPSs) greatly influence the electrochemical properties of lithium-sulfur (Li-S) batteries and their practical applications. For this reason, ammonium thiosulfate (AMTS) with effective redox regulation capability has been proposed as a functional electrolyte additive to promote the bidirectional conversion of sulfur species and inhibit the shuttle effect of soluble LiPSs. During discharging, the S2O32- in AMTS can trigger the rapid reduction of LiPSs from long chains to short chains by a spontaneous chemical reaction with sulfur species, thereby decreasing the accumulation of LiPSs in the electrolyte. During charging, the NH4+ in the AMTS enhances the dissociation/dissolution of Li2S2/Li2S by hydrogen-binding interactions, which alleviates the electrode surface passivation and facilitates the reversible oxidation of short-chain sulfides back to long chains. The enhanced bidirectional redox kinetics brought about by AMTS endows Li-S cells with high reversible capacity, excellent cycle stability, and rate capability even under lean electrolyte conditions. This work not only illustrates an effective redox regulation strategy by an electrolyte additive but also investigates its catalytic reaction mechanism and Li corrosion behavior. The crucial criteria for screening additives that enable bidirectional redox mediation analogous to AMTS are summarized, and its application perspectives/challenges are further discussed.

2.
Adv Mater ; 36(4): e2303710, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37571811

RESUMO

Lithium (Li) metal is considered as one of the most promising candidates of anode material for high-specific-energy batteries, while irreversible chemical reactions always occur on the Li surface to continuously consume active Li, electrolyte. Solid electrolyte interphase (SEI) layer has been regarded as the key component in protecting Li metal anode. Herein, a controllable dual-layered SEI for Li metal anode in a scalable, low-loss manner is constructed. The SEI is self-induced by the predeposited LiAlO2 (LAO) layer during the initial cycles, in which the outer organic layer is produced due to the electrons tunneling through LAO, resulting in the reduction of electrolyte. The robust inner LAO layer can promote uniform Li deposition owing to its favorable mechanical strength and ionic conductivity, and the outer organic layer can further improve the stability of SEI. Benefiting from the remarkable effects of this dual-layered SEI, enhanced electrochemical performance of the LAO-Li anode is achieved. Additionally, a large-size LAO-Li sample can be easily obtained, and the preparation of the modified Li metal anode shows huge potential for large-scale production. This work highlights the tremendous potential of this self-induced dual-layered SEI for the commercialization of Li metal anode.

3.
Angew Chem Int Ed Engl ; 62(38): e202307083, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37489757

RESUMO

Dual-ion batteries (DIBs) is a promising technology for large-scale energy storage. However, it is still questionable how material structures affect the anion storage behavior. In this paper, we synthesis graphite with an ultra-large interlayer distance and heteroatomic doping to systematically investigate the combined effects on DIBs. The large interlayer distance of 0.51 nm provides more space for anion storage, while the doping of the heteroatoms reduces the energy barriers for anion intercalation and migration and enhances rapid ionic storage at interfaces simultaneously. Based on the synergistic effects, the DIBs composed of carbon cathode and lithium anode afford ultra-high capacity of 240 mAh g-1 at current density of 100 mA g-1 . Dual-carbon batteries (DCBs) using the graphite as both of cathode and anode steadily cycle 2400 times at current density of 1 A g-1 . Hence, this work provides a reference to the strategy of material designs of DIBs and DCBs.

4.
Nat Genet ; 55(8): 1370-1380, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37430091

RESUMO

How enhancers control target gene expression over long genomic distances remains an important unsolved problem. Here we investigated enhancer-promoter communication by integrating data from nucleosome-resolution genomic contact maps, nascent transcription and perturbations affecting either RNA polymerase II (Pol II) dynamics or the activity of thousands of candidate enhancers. Integration of new Micro-C experiments with published CRISPRi data demonstrated that enhancers spend more time in close proximity to their target promoters in functional enhancer-promoter pairs compared to nonfunctional pairs, which can be attributed in part to factors unrelated to genomic position. Manipulation of the transcription cycle demonstrated a key role for Pol II in enhancer-promoter interactions. Notably, promoter-proximal paused Pol II itself partially stabilized interactions. We propose an updated model in which elements of transcriptional dynamics shape the duration or frequency of interactions to facilitate enhancer-promoter communication.


Assuntos
Elementos Facilitadores Genéticos , RNA Polimerase II , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica
5.
ACS Appl Mater Interfaces ; 15(13): 17144-17151, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951603

RESUMO

Solid polymer electrolyte (SPE) is quite an attractive candidate for constructing high-voltage Li metal batteries (LMBs) with high energy density and excellent safety. However, sim ultaneous achievement of high-voltage stability against the cathode and good compatibility with the Li anode remains challenging for the current SPE technology. Herein, a dual-layered solid electrolyte (DLSE) consisting of an oxidation-resistant poly(acrylonitrile) (PAN) layer facing a high-potential cathode and a reduction-compatible poly(vinylidene fluoride) (PVDF) layer incorporated by Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles and an ionic liquid plasticizer in contact with a Li anode was fabricated. The uniquely designed DLSE holds favorable overall properties in ionic conductivity, Li+ transference number, and mechanical strength. Moreover, the combined advantages of two polymer electrolyte layers greatly address the interface issues on both the cathode and anode. Consequently, the high-voltage LMBs employing the DLSE exhibit excellent room-temperature performances including high rate capacity and long cycle life.

6.
Adv Mater ; 35(18): e2212096, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841246

RESUMO

Garnet-type Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZ) electrolyte is a promising candidate for high-performance solid-state batteries, while its applications are hindered by interfacial problems. Although the utilization of functional coatings and molten lithium (Li) effectively solves the LLZ interfacial compatibility problem with Li metal, it poses problems such as high cost, high danger, and structural damage. Herein, a mixed conductive layer (MCL) is introduced at the LLZ/Li interface (RT-MCL) via an in situ cold bonding process at room temperature. Such a stable and compact RT-MCL can effectively suppress side reactions and protect the crystal structure of LLZ, and it also inhibits growth of Li dendrites and promotes uniform Li deposition. The critical current density (CCD) of the Li symmetric cell composed of RT-MCL-LLZ is increased to 1.8 mA cm-2 and provides stable cycling performance over 2000 h under 0.5 mA cm-2 . Additionally, this in situ cold bonding treatment can significantly reduce cost and eliminate potential safety issues caused by the high-temperature processing of Li metal. This work highlights tremendous potential of this cold bonding technique in the reasonable design and optimization of the LLZ/Li interface.

7.
ChemistryOpen ; 12(2): e202200235, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36722823

RESUMO

In recent years, the incidence of cancer is high around the world, and the resistance of bacteria is increasing. To cope with the potentially adverse side effects of cancer chemotherapy and surgery, researchers are turning to the construction of new drug scaffolds. The indoline structure exists in a huge number of natural products, but drugs with indoline have only been formally studied in recent years. With the deepening of research, drugs containing indoline have played important roles in more disease treatment aspects, such as anti-tumor, anti-bacterial, anti-inflammatory and have been used as analgesics, to treat cardiovascular diseases and so on. The synthesis and pharmacological activity of indoline derivatives is summarized in this review in order to support the addition of the indoline component to the toolbox of medicinal chemists. This review focuses on the advantages of indoline compounds in development and synthesis of and for the use as anticancer drugs, antibacterial drugs, to treat cardiovascular diseases and as anti-inflammatory and analgesic drugs. Indoline structures are commonly found in natural and synthetic compounds with medicinal value and are now beginning to be exploited as the basic backbone of various drugs. As research continues, dihydroindoles and their derivatives will play a greater role in the medical field.


Assuntos
Produtos Biológicos , Doenças Cardiovasculares , Humanos , Antibacterianos/farmacologia , Preparações Farmacêuticas
8.
ACS Appl Mater Interfaces ; 14(39): 44338-44344, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149014

RESUMO

In lithium metal batteries (LMB), unrestricted growth of lithium dendrites will pierce the separator and cause an internal short circuit. Therefore, we designed modified separator with an InN thin layer, which could be in situ converted into a binary mixed-modified layer of Li-In alloy and Li3N during the lithium plating/stripping process. Among them, Li-In alloy induces the lateral growth of lithium dendrites and prevents the separator from being pierced; Li3N balances ion distribution at the lithium anode/separator interface, which is beneficial to inhibit the growth of lithium dendrites. Under the synergistic effect of the two phases, the performance of LMBs was obviously improved. In addition, the separator modification does not need to be carried out in a protective atmosphere and is suitable for large-scale roll-to-roll processing.

9.
Chem Sci ; 13(32): 9277-9284, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093012

RESUMO

Lithium (Li) dendrite growth is a long-standing challenge leading to short cycle life and safety issues in Li metal batteries. Li dendrite growth is kinetically controlled by ion transport, the concentration gradient, and the local electric field. In this study, an internal electric field is generated between the anode and Au-modified separator to eliminate the concentration gradient of Li+. The Li-Au alloy is formed during the first cycle of Li plating/stripping, which causes Li+ deposition on the Au-modified side and lithium anode electrode, reversing the lithium dendrite growth direction. The electrically coupled Li metal electrode and Au-modified film create a uniform electric potential and Li+ concentration distribution, resulting in reduced concentration polarization and stable Li deposition. As a result, the Au-modified separator improves the lifespan of Li‖Li batteries; the Li‖LiFePO4 cells show excellent capacity retention (>97.8% after 350 cycles), and Li‖LiNi0.8Co0.1Mn0.1O2 cells deliver 75.1% capacity retention for more than 300 cycles at 1C rate. This strategy offers an efficient approach for commercial application in advanced metallic Li batteries.

10.
Psychiatry Res ; 316: 114790, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987070

RESUMO

The adenosine A2A receptor (ADORA2A) is highly expressed in the central nervous system and plays vital roles in drug addiction. In this study, we aimed to explore the susceptibility of ADORA2A to methamphetamine use disorder (MUD) and the craving degree based on a two-stage association analysis. A total of 3,542 (1,216 patients with MUD and 2,326 controls) and 1,740 participants (580 patients with MUD and 1,160 controls) were recruited in discovery and replication stage, respectively. Significant SNPs identified in the discovery stage were genotyped in the replication samples. Serum levels of ADORA2A were measured using enzyme-linked immunosorbent assay kits. The genetic association signal of each SNP was examined using Plink. A linear model was fitted to investigate the relationship between craving scores and genotypes of significant SNPs. SNP rs5751876 was significantly associated with MUD in the discovery samples and this association signal was then further replicated in the replication samples. Significant associations were also identified between serum levels of ADORA2A and the genotypes of rs5751876 (P = 0.0002). The craving scores in patients with MUD were strongly correlated with rs5751876 genotypes. Our results suggest that polymorphisms of the ADORA2A gene could affect the susceptibility to MUD and its craving degree.


Assuntos
Metanfetamina , Receptor A2A de Adenosina , Fissura , Humanos , Metanfetamina/efeitos adversos , Polimorfismo de Nucleotídeo Único/genética , Receptor A2A de Adenosina/genética , Fatores de Risco
11.
Front Psychiatry ; 13: 870322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669261

RESUMO

Objectives: Methamphetamine (METH) is a central nervous psychostimulant and one of the most frequently used illicit drugs. Numerous genetic loci that influence complex traits, including alcohol abuse, have been discovered; however, genetic analyses for METH dependence remain limited. An increased histone deacetylase 3 (HDAC3) expression has been detected in Fos-positive neurons in the dorsomedial striatum following withdrawal after METH self-administration. Herein, we aimed to systematically investigate the contribution of HDAC3 to the vulnerability to METH dependence in a Han Chinese population. Methods: In total, we recruited 1,221 patients with METH dependence and 2,328 age- and gender-matched controls. For genotyping, we selected 14 single nucleotide polymorphisms (SNPs) located within ± 3 kb regions of HDAC3. The associations between genotyped genetic polymorphisms and the vulnerability to METH dependence were examined by single marker- and haplotype-based methods using PLINK. The effects of expression quantitative trait loci (eQTLs) on targeted gene expressions were investigated using the Genotype-Tissue Expression (GTEx) database. Results: The SNP rs14251 was identified as a significant association signal (χ2 = 9.84, P = 0.0017). An increased risk of METH dependence was associated with the A allele (minor allele) of rs14251 [odds ratio (95% CI) = 1.25 (1.09-1.43)]. The results of in silico analyses suggested that SNP rs14251 could be a potential eQTL signal for FCHSD1, PCDHGB6, and RELL2, but not for HDAC3, in various human tissues. Conclusion: We demonstrated that genetic polymorphism rs14251 located at 5q31.3 was significantly associated with the vulnerability to METH dependence in Han Chinese population.

12.
Phys Chem Chem Phys ; 23(32): 17365-17373, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34350446

RESUMO

At low temperature, spontaneous (zero-field-cooled, SEB) and traditional (field-cooled) exchange bias effects may be induced in a series of NiMn-based Heusler alloys, and the exchange bias is commonly sensitive to alloying elements and compositions, while the mechanisms especially for SEB are still elusive. Therefore, the SEB in Mn-rich Heusler alloys with coexistence of ferromagnetic and antiferromagnetic exchange interactions is numerically studied by performing a modified Monte Carlo simulation. The intrinsic magnetocrystalline anisotropies (KAF), exchange interactions (JFM-AF and JAF-AF), and occupation probabilities (xFM) are directly tuned to establish their dependencies of zero-field-cooled/field-cooled thermomagnetic curves and zero-field-cooled magnetization hysteresis loops. The results indicate that the freezing temperature is monotonically enhanced with increasing KAF and varies nonmonotonically with other parameters, and at 5 K, the irreversibility arising from antiferromagnetic components becomes high enough to trigger SEB even though no spin glass state exists. The SEB is nonmonotonic with KAF, JFM-AF, JAF-AF, and xFM, and its maximum value will be obtained at KAF = 4.5 × 106 J m-3, JFM-AF = 5 meV, JAF-AF = -5 meV, or xFM = 0.3. On the contrary, the coercivity is also nonmonotonic with KAF and JFM-AF while monotonic with JAF-AF and xFM. The values of the SEB field are nearly one order of magnitude smaller than those of coercivity, consistent with experimental data. The magnetic relaxation properties are calculated to propose two factors, i.e., ferromagnetic-like domain between ferromagnetic and antiferromagnetic components and decay rate, to determine the final SEB. This work demonstrates the mechanisms to optimize SEB in Mn-rich Heusler alloys, and physically the results obtained are also suitable for other material systems with spontaneous ferromagnet/antiferromagnet phase separations.

13.
ACS Appl Mater Interfaces ; 12(28): 31411-31418, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551515

RESUMO

Uncontrolled lithium (Li) plating/stripping is one of the most fatal problems of lithium metal batteries (LMBs). Herein, we modified a copper (Cu) foil current collector surface with an indium nitride (InN) thin film, which regulated the Li plating/stripping process through in situ lithiation. That is, InN transformed into a lithium nitride (Li3N)/Li-In alloy phase (LixIny)-mixed protection layer during the first Li plating process. Li3N is an efficient Li+ conductor and is stable to Li, whereas LixIny possesses fast Li+ diffusion kinetics. The synergistic effect of these two species simultaneously caused the mixed protective layer to display fast Li+ diffusion, inhibited the rapid growth of Li dendrites, and induced bottom Li deposition under the protective layer. Li∥Cu cells exhibited higher Coulombic efficiency and a more stable lithium plating/stripping process than a control cell without an InN layer. Moreover, when an InN thin film was transplanted onto the surface of a Li metal sheet using the same method, the resulting Li∥Li symmetrical cell delivered extraordinary performance. This in situ formation of a multifunctional modified layer by a facile preparation process could be an effective way to inhibit dendrite growth and accelerate the application of LMBs.

14.
ACS Appl Mater Interfaces ; 12(21): 23939-23950, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32369339

RESUMO

Anatase TiO2 is an attractive anode for Li-ion batteries and Na-ion batteries because of its structural stability. However, the electrochemical capability of anatase TiO2 is unsatisfactory due to its intrinsically low electrical conductivity and poor ion diffusivity at the electrode/electrolyte interface. We prepared 3D lightweight graphene aerogel-encapsulated anatase TiO2, which exhibits a high reversible capacity (390 mA h g-1 at 50 mA g-1), a superior rate performance (164.9 mA h g-1 at 5 A g-1), and a long-term cycling capability (capacity retention of 86.8% after 7800 cycles). The major energy-storage mechanism is surface capacitance dominated, which favors a high capacity and fast Na+ uptake. The inherent features of 3D porous aerogels provide additional active reaction sites and facilitate fast charge diffusion and easy ion access. This will enable the development of 3D interconnected, graphene-based, high-capacity active materials for the development of next-generation energy-storage applications.

15.
Small ; 16(13): e1906025, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32141153

RESUMO

Ni-rich Li-ion cathode materials promise high energy density, but are limited in power density and cycle life, resulting from their poor dynamic characteristics and quick degradation. On the other hand, capacitor electrode materials promise high power density and long cycle life but limited capacities. A joint energy storage mechanism of these two kinds is performed in the material-compositional level in this paper. A valence coupling between carbon π-electrons and O2- is identified in the as-prepared composite material, using a tracking X-ray photoelectron spectroscopy strategy. Besides delivering capacity simultaneously from its LiNi0.8 Co0.1 Mn0.1 O2 and capacitive carbon components with impressive amount and speed, this material shows robust cycling stability by preventing oxygen emission and phase transformation via the discovered valence coupling effect. Structural evolution of the composite shows a more flattened path compared to that of the pure LiNi0.8 Co0.1 Mn0.1 O2 , revealed by the in situ X-ray diffraction strategy. Without obvious phase transformation and losing active contents in this composite material, long cycling can be achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...