Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(9): 107651, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122001

RESUMO

Chimeric antigen receptor (CAR) is a synthetic receptor that induces T cell-mediated lysis of abnormal cells. As cancer driver proteins are present at low levels on the cell surface, they can cause weak CAR reactivity, resulting in antigen sensitivity defects and consequently limited therapeutic efficacy. Although affinity maturation enhances the efficacy of CAR-T cell therapy, it causes off-target cross-reactions resulting in adverse effects. Preferentially expressed antigen in melanoma (PRAME) is an intracellular oncoprotein that is overexpressed in various tumors and restricted in normal tissues, except the testis. Therefore, PRAME could be an ideal target for cancer immunotherapy. In this study, we developed an experimental CAR system comprising six single-chain variable fragments that specifically recognizes the PRAMEp301/HLA-A∗24:02 complex. Cell-mediated cytotoxicity was demonstrated using a panel of CARs with a wide range of affinities (KD = 10-10-10-7 M) and affinity modulation. CAR-T cells with fast on-rates enhance antigen sensitivity by accelerating the killing rates of these cells. Alanine scanning data demonstrated the potential of genetically engineered CARs to reduce the risk of cross-reactivity, even among CARs with high affinities. Given the correlation between on-rates and dwell time that occurs in rebinding and cell-mediated cytotoxicity, it is proposed that CAR-binding characteristics, including on-rate, play a pivotal role in the lytic capacity of peptide-major histocompatibility complex-targeting CAR-T cells, thus facilitating the development of strategies whereby genetically engineered CARs target intracellular antigens in cancer cells to lyse the cells.

2.
Protein Sci ; 32(9): e4745, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550885

RESUMO

Antibodies are used for many therapeutic and biotechnological purposes. Because the affinity of an antibody to the antigen is critical for clinical efficacy of pharmaceuticals, many affinity maturation strategies have been developed. Although we previously reported an affinity maturation strategy in which the association rate of the antibody toward its antigen is improved by introducing a cluster of arginine residues into the framework region of the antibody, the detailed molecular mechanism responsible for this improvement has been unknown. In this study, we introduced five arginine residues into an anti-hen egg white lysozyme antibody (HyHEL10) Fab fragment to create the R5-mutant and comprehensively characterized the interaction between antibody and antigen using thermodynamic analysis, X-ray crystallography, and molecular dynamics (MD) simulations. Our results indicate that introduction of charged residues strongly enhanced the association rate, as previously reported, and the antibody-antigen complex structure was almost the same for the R5-mutant and wild-type Fabs. The MD simulations indicate that the mutation increased conformational diversity in complementarity-determining region loops and thereby enhanced the association rate. These observations provide the molecular basis of affinity maturation by R5 mutation.


Assuntos
Complexo Antígeno-Anticorpo , Antígenos , Conformação Proteica , Antígenos/química , Complexo Antígeno-Anticorpo/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/química , Cristalografia por Raios X
3.
Sci Rep ; 8(1): 17322, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470792

RESUMO

CD80, which regulates T cell activation, may provide a differential diagnostic marker between minimal change disease (MCD) and other renal diseases, including focal segmental glomerular sclerosis (FSGS). However, recent reports show contrasting results. Therefore, we evaluated the utility of urinary CD80 as a diagnostic biomarker. We collected 65 urine samples from 55 patients with MCD (n = 31), FSGS (n = 4), inherited nephrotic syndrome (n = 4), Alport syndrome (n = 5) and other glomerular diseases (n = 11), and control samples (n = 30). We measured urinary CD80 levels by ELISA. Urinary CD80 (ng/gCr) (median, interquartile range) levels were significantly higher in patients with MCD in relapse (91.5, 31.1-356.0), FSGS (376.2, 62.7-1916.0), and inherited nephrotic syndrome (220.1, 62.9-865.3), than in patients with MCD in remission (29.5, 21.7-52.8) (p < 0.05). Elevation of urinary CD80 was observed, even in patients with inherited nephrotic syndrome unrelated to T cell activation. Additionally, urinary CD80 was positively correlated with urinary protein levels. Our results suggest that urinary CD80 is unreliable as a differential diagnostic marker between MCD in relapse and FSGS or inherited kidney diseases. Increased urinary CD80 excretion was present in all patients with active kidney disease.


Assuntos
Antígeno B7-1/urina , Biomarcadores/urina , Nefropatias/classificação , Nefropatias/diagnóstico , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/urina , Humanos , Lactente , Nefropatias/urina , Masculino , Nefrose Lipoide/diagnóstico , Nefrose Lipoide/urina , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/urina , Curva ROC , Recidiva , Estudos Retrospectivos , Urinálise , Adulto Jovem
4.
Biochem Biophys Rep ; 15: 81-85, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30073208

RESUMO

Antibodies are widely used not only as therapeutic agents but also as research tools and diagnostic agents, and extensive efforts have been made to generate antibodies that have higher affinity. It was recently reported that introduction of charged residues into the framework region of an antibody improved its affinity; however, the underlying molecular mechanism has not been elucidated. In this study, we used kinetic and thermodynamic analyses of the antibody-antigen interaction to investigate the molecular mechanism by which an antibody with introduced charged residues recognizes its antigen with higher affinity. The introduction of basic amino acid residues resulted in improvement of the affinity whereas the introduction of acidic residues weakened the interaction. For two mutant antigen-binding fragments (Fabs) with improved affinity (named K5- and R5-mutants), the balance between the association rate constant kon and the dissociation rate constant koff was distinct despite each mutant having the same number of charged residues. Moreover, thermodynamic analysis of the interactions in the transition state revealed a difference between the K5- and R5-mutants in terms of enthalpic energy change following formation of the encounter complex with the antigen. These results suggest that the affinity of the K5- and R5-mutants is improved by distinct mechanisms. Although the mutations destabilize the Fab and necessitate further studies, our strategy is expected to become a versatile and simple means to improve the affinity of antibodies to their antigens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...