Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 184(10): 5929-43, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22037862

RESUMO

Significance of carbon cycling in polar ecosystems is well recognized. Yet, bacteria in surface snow have received less attention in terms of their potential in carbon cycling. Here, we present results on carbon utilization by bacterial communities in three surface snow samples from Antarctica collected along a coastal to inland transect. Microcosm studies were conducted over 8 days at 5 ± 1°C to study carbon metabolism in different combinations of added low molecular weight (LMW (glucose, <1 kDa)) and high molecular weight (HMW (starch, >1 kDa)) substrates (final 20 ppm). The total organic carbon (TOC) in the snow samples decreased with time at rates ranging from non-detectable to 1.4 ppm day(-1) with rates highest in snow samples from inland region. In addition, carbon utilization studies were also carried out with bacterial isolates LH1, LH2, and LH4 belonging to the genus Cellulosimicrobium, Bacillus, and Ralstonia, respectively, isolated from the snow samples. Studies with strain LH2 in different amendments of glucose and starch showed that TOC decreased with time in all amendments at a rate of 0.9-1.5 ppm day(-1) with highest rates of 1.4-1.5 ppm day(-1) in amendments containing a higher proportion of starch. The bacterial isolates were also studied to determine their ability to utilize other LMW and HMW compounds. They utilized diverse substrates like carbohydrates, amino acids, amines, amides, complex polymers, etc., of molecular mass <100 Da, 100-500 Da, >500 Da-1 kDa, and >1 kDa preferring (up to 31 times) substrates with mass of >1 kDa than <1 kDa. The ability of bacteria in snow to utilize diverse LMW and HMW substrates indicates that they could be important in the uptake of similar compounds in snow and therefore potentially govern snow chemistry.


Assuntos
Carbono/química , Neve/química , Regiões Antárticas , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carbono/metabolismo , Ecossistema , Consórcios Microbianos , Peso Molecular , Neve/microbiologia
2.
Environ Sci Technol ; 45(23): 9944-50, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22017709

RESUMO

Organic carbon records in Antarctic snow are sparse despite the fact that it is of great significance to global carbon dynamics, snow photochemistry, and air-snow exchange processes. Here, surface snow total organic carbon (TOC) along with sea-salt Na(+), dust, and microbial load of two geographically distinct traverses in East Antarctica are presented, viz. Princess Elizabeth Land (PEL, coast to 180 km inland, Indian Ocean sector) and Dronning Maud Land (DML, ∼110-300 km inland, Atlantic Ocean sector). TOC ranged from 88 ± 4 to 928 ± 21 µg L(-1) in PEL and 13 ± 1 to 345 ± 6 µg L(-1) in DML. TOC exhibited considerable spatial variation with significantly higher values in the coastal samples (p < 0.001), but regional variation was insignificant within the two transects beyond 100 km (p > 0.1). Both distance from the sea and elevation influenced TOC concentrations. TOC also showed a strong positive correlation with sea-salt Na(+) (p < 0.001). In addition to marine contribution, in situ microorganisms accounted for 365 and 320 ng carbon L(-1) in PEL and DML, respectively. Correlation with dust suggests that crustal contribution of organic carbon was marginal. Though TOC was predominantly influenced by marine sources associated with sea-spray aerosols, local microbial contributions were significant in distant locations having minimal sea-spray input.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Neve/química , Regiões Antárticas , Oceano Atlântico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...