Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 33(43): 5065-77, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24141788

RESUMO

Y-box binding protein-1 (YB-1) is highly expressed in tumors and it participates in various cellular processes. Previous studies indicated that YB-1 binds to mispaired DNA and interacts with several mismatch repair (MMR)-related factors. However, its role in the MMR system remains undefined. Here, we found that YB-1 represses mutS homolog 6 (MSH6)-containing MMR complex formation and reduces MutSα mismatch binding activity by disrupting interactions among MMR-related factors. In an effort to elucidate how YB-1 exerts this inhibitory effect, we have identified two functional proliferating cell nuclear antigen (PCNA)-interacting protein (PIP)-boxes that mediate YB-1/PCNA interaction and locate within the C-terminal region of YB-1. This interaction is critical for the regulatory role of YB-1 in repressing MutSα mismatch binding activity, disrupting MutSα/PCNA/G/T heteroduplex ternary complex formation and inhibiting in vitro MMR activity. The differential regulation of 3' and 5' nick-directed MMR activity by YB-1 was also observed. Moreover, YB-1 overexpression is associated with the alteration of microsatellite pattern and the enhancement of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced and spontaneous mutations. Furthermore, upregulation of other PIP-box-containing proteins, such as myeloid cell leukemia-1 (Mcl-1) and inhibitor of growth protein 1b (ING1b), has no impact on MMR complex formation and mutation accumulation, thus revealing the significant effect of YB-1 on regulating the MMR system. In conclusion, our study suggests that YB-1 functions as a PCNA-interacting factor to exert its regulatory role on the MMR process and involves in the induction of genome instability, which may partially account for the oncogenic potential of YB-1.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Sítios de Ligação , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Metilnitronitrosoguanidina/farmacologia , Instabilidade de Microssatélites , Mutação , Antígeno Nuclear de Célula em Proliferação/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteína 1 de Ligação a Y-Box/química , Proteína 1 de Ligação a Y-Box/genética
2.
Oncogene ; 25(3): 448-62, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16170350

RESUMO

Hepatitis C virus (HCV) core has a pleiotropic effect on various promoters. In this study, we found that the expression of nucleolar phosphoprotein B23 was enhanced in HCV core-expressing cells and, moreover, HCV core interacts directly with the C-terminal end of B23. Using sucrose gradient centrifugation analysis and immunoprecipitation assays, HCV core was found in a large complex containing B23 and its interacting partner transcription factor YY1. Both B23 and HCV core associated with YY1 in the central GA/GK-rich and C-terminal zinc finger domain. These physical interactions between core, B23, and YY1 led to ternary complex formation that was bound to the YY1 response element. In a transient cotransfection experiment, relief of the trans-suppression activity of YY1 on the YY1-response element-driven reporter by core and B23 was found. This is also true when examining the effects of these three constructs on the B23 promoter-driven reporter. Additionally, chromatin immunoprecipitation assays indicated that a transcriptional activation complex consisting of core, together with B23, p300, and YY1, was recruited to the YY1 response element of B23 promoter, and this probably occurred through complex formation between core and these three cellular transcription regulators. This is different from the situation in the absence of core, where YY1 and histone deacetylase 1, but not B23 and p300, were associated on the YY1 element as the transcription repression complex. Together, our results indicate that HCV core can recruit B23 and p300 to relieve the repression effect of YY1 on B23 promoter activity, a property that requires the intrinsic histone acetyltransferase activity of p300. Thus, because these three core-associated cellular transcription regulators have a multitude of cellular interacting proteins and are involved in a versatility of cellular processes, the complex formation described here may partially account for the pleiotropic effects of core protein on gene expression and cellular function in HCV-infected cells.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hepacivirus/fisiologia , Proteínas Nucleares/metabolismo , Proteínas do Core Viral/fisiologia , Fator de Transcrição YY1/fisiologia , Fatores de Transcrição de p300-CBP/metabolismo , Linhagem Celular , Humanos , Imunoprecipitação , Microscopia Confocal , Proteínas Nucleares/genética , Nucleofosmina , Regiões Promotoras Genéticas
3.
J Virol ; 73(4): 2841-53, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10074132

RESUMO

The nucleocapsid core protein of hepatitis C virus (HCV) has been shown to trans-act on several viral or cellular promoters. To get insight into the trans-action mechanism of HCV core protein, a yeast two-hybrid cloning system was used for identification of core protein-interacting cellular protein. One such cDNA clone encoding the DEAD box family of putative RNA helicase was obtained. This cellular putative RNA helicase, designated CAP-Rf, exhibits more than 95% amino acid sequence identity to other known RNA helicases including human DBX and DBY, mouse mDEAD3, and PL10, a family of proteins generally involved in translation, splicing, development, or cell growth. In vitro binding or in vivo coimmunoprecipitation studies demonstrated the direct interaction of the full-length/matured form and C-terminally truncated variants of HCV core protein with this targeted protein. Additionally, the protein's interaction domains were delineated at the N-terminal 40-amino-acid segment of the HCV core protein and the C-terminal tail of CAP-Rf, which encompassed its RNA-binding and ATP hydrolysis domains. Immunoblotting or indirect immunofluorescence analysis revealed that the endogenous CAP-Rf was mainly localized in the nucleus and to a lesser extent in the cytoplasm, and when fused with FLAG tag, it colocalized with the HCV core protein either in the cytoplasm or in the nucleus. Similar to other RNA helicases, this cellular RNA helicase has nucleoside triphosphatase-deoxynucleoside triphosphatase activity, but this activity is inhibited by various forms of homopolynucleotides and enhanced by the HCV core protein. Moreover, transient expression of HCV core protein in human hepatoma HuH-7 cells significantly potentiated the trans-activation effect of FLAG-tagged CAP-Rf or untagged CAP-Rf on the luciferase reporter plasmid activity. All together, our results indicate that CAP-Rf is involved in regulation of gene expression and that HCV core protein promotes the trans-activation ability of CAP-Rf, likely via the complex formation and the modulation of the ATPase-dATPase activity of CAP-Rf. These findings provide evidence that HCV may have evolved a distinct mechanism in alteration of host cellular gene expression regulation via the interaction of its nucleocapsid core protein and cellular putative RNA helicase known to participate in all aspects of cellular processes involving RNA metabolism. This feature of core protein may impart pleiotropic effects on host cells, which may partially account for its role in HCV pathogenesis.


Assuntos
Regulação Viral da Expressão Gênica , Hepacivirus/fisiologia , RNA Helicases/genética , Proteínas do Core Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/análise , DNA Complementar/genética , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , RNA Helicases/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...