Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 176: 112365, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39426356

RESUMO

Musculoskeletal models of the shoulder are needed to understand the mechanics of overhead motions. Existing models implementing the shoulder rhythm are generic and might not accurately represent an individual's scapular kinematics. We introduce a method to personalize the shoulder rhythm of a computational model of the upper body that defines the orientations of the clavicle and scapula based on glenohumeral joint angles. During five static calibration poses, we palpate and measure the orientation of the scapula. We explore the importance of representing shoulder elevation by introducing clavicle elevation as a degree of freedom that is independent of the glenohumeral angles. For ten subjects, we record the five calibration poses, ten additional static poses, and dynamic arm raises covering the participants' full range of motion in each body plane using optical motion capture. We examine the data using a dynamically-constrained inverse kinematics analysis. Shoulder rhythm personalization, independent clavicle elevation, and both in combination reduce the average upper body marker tracking error compared to the generic model in the static poses (26 mm to 17-20 mm) and in the dynamic trials (22 mm to 14-17 mm). Only personalization reduces the average scapula marker error (51 mm to 36-38 mm) and scapula axis-angle error (15° to 10°) compared with the palpated ground truth measurements in the static poses, and in the dynamic trials at instances that best match the static poses (53 mm to 37-40 mm, 15° to 9°). Our results show that personalizing upper body models improves kinematic tracking. We provide our experimental data, model, and methods to allow researchers to reproduce and build upon our results.

2.
IEEE Trans Biomed Eng ; 69(5): 1608-1619, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34714730

RESUMO

OBJECTIVE: Involuntary subject motion is the main source of artifacts in weight-bearing cone-beam CT of the knee. To achieve image quality for clinical diagnosis, the motion needs to be compensated. We propose to use inertial measurement units (IMUs) attached to the leg for motion estimation. METHODS: We perform a simulation study using real motion recorded with an optical tracking system. Three IMU-based correction approaches are evaluated, namely rigid motion correction, non-rigid 2D projection deformation and non-rigid 3D dynamic reconstruction. We present an initialization process based on the system geometry. With an IMU noise simulation, we investigate the applicability of the proposed methods in real applications. RESULTS: All proposed IMU-based approaches correct motion at least as good as a state-of-the-art marker-based approach. The structural similarity index and the root mean squared error between motion-free and motion corrected volumes are improved by 24-35% and 78-85%, respectively, compared with the uncorrected case. The noise analysis shows that the noise levels of commercially available IMUs need to be improved by a factor of 105 which is currently only achieved by specialized hardware not robust enough for the application. CONCLUSION: Our simulation study confirms the feasibility of this novel approach and defines improvements necessary for a real application. SIGNIFICANCE: The presented work lays the foundation for IMU-based motion compensation in cone-beam CT of the knee and creates valuable insights for future developments.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Algoritmos , Artefatos , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Joelho/diagnóstico por imagem , Movimento (Física) , Imagens de Fantasmas , Suporte de Carga
3.
IEEE Access ; 9: 71821-71831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141516

RESUMO

Detector saturation in cone-beam computed tomography occurs when an object of highly varying shape and material composition is imaged using an automatic exposure control (AEC) system. When imaging a subject's knees, high beam energy ensures the visibility of internal structures but leads to overexposure in less dense border regions. In this work, we propose to use an additional low-dose scan to correct the saturation artifacts of AEC scans. Overexposed pixels are identified in the projection images of the AEC scan using histogram-based thresholding. The saturation-free pixels from the AEC scan are combined with the skin border pixels of the low-dose scan prior to volumetric reconstruction. To compensate for patient motion between the two scans, a 3D non-rigid alignment of the projection images in a backward-forward-projection process based on fiducial marker positions is proposed. On numerical simulations, the projection combination improved the structural similarity index measure from 0.883 to 0.999. Further evaluations were performed on two in vivo subject knee acquisitions, one without and one with motion between the AEC and low-dose scans. Saturation-free reference images were acquired using a beam attenuator. The proposed method could qualitatively restore the information of peripheral tissue structures. Applying the 3D non-rigid alignment made it possible to use the projection images with inter-scan subject motion for projection image combination. The increase in radiation exposure due to the additional low-dose scan was found to be negligibly low. The presented methods allow simple but effective correction of saturation artifacts.

4.
Sci Rep ; 11(1): 4343, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623058

RESUMO

In many research areas, scientific progress is accelerated by multidisciplinary access to image data and their interdisciplinary annotation. However, keeping track of these annotations to ensure a high-quality multi-purpose data set is a challenging and labour intensive task. We developed the open-source online platform EXACT (EXpert Algorithm Collaboration Tool) that enables the collaborative interdisciplinary analysis of images from different domains online and offline. EXACT supports multi-gigapixel medical whole slide images as well as image series with thousands of images. The software utilises a flexible plugin system that can be adapted to diverse applications such as counting mitotic figures with a screening mode, finding false annotations on a novel validation view, or using the latest deep learning image analysis technologies. This is combined with a version control system which makes it possible to keep track of changes in the data sets and, for example, to link the results of deep learning experiments to specific data set versions. EXACT is freely available and has already been successfully applied to a broad range of annotation tasks, including highly diverse applications like deep learning supported cytology scoring, interdisciplinary multi-centre whole slide image tumour annotation, and highly specialised whale sound spectroscopy clustering.

5.
Genesis ; 56(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29095555

RESUMO

Mammals have highly diverse limbs that have contributed to their occupation of almost every niche. Researchers have long been investigating the development of these diverse limbs, with the goals of identifying developmental processes and potential biases that shape mammalian limb diversity. To date, researchers have used techniques ranging from the genomic to the anatomic to investigate the developmental processes shaping the limb morphology of mammals from five orders (Marsupialia, Chiroptera, Rodentia, Cetartiodactyla, and Perissodactyla). Results of these studies suggest that the differential expression of genes controlling diverse cellular processes underlies mammalian limb diversity. Results also suggest that the earliest development of the limb tends to be conserved among mammalian species, while later limb development tends to be more variable. This research has established the mammalian limb as a model system for evolutionary developmental biology, and set the stage for more in-depth, cross-disciplinary research into the genetic controls, tissue-level cellular behaviors, and selective pressures that have driven the developmental evolution of mammalian limbs. Ideally, these studies will be performed in a diverse suite of mammalian species within a comparative, phylogenetic framework.


Assuntos
Evolução Biológica , Extremidades , Mamíferos , Animais , Biodiversidade , Mamíferos/anatomia & histologia , Mamíferos/classificação , Modelos Biológicos , Tempo
6.
J Integr Bioinform ; 14(2)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28753537

RESUMO

Osteoarthritis is a degenerative disease affecting bones and cartilage especially in the human knee. In this context, cartilage thickness is an indicator for knee cartilage health. Thickness measurements are performed on medical images acquired in-vivo. Currently, there is no standard method agreed upon that defines a distance measure in articular cartilage. In this work, we present a comparison of different methods commonly used in literature. These methods are based on nearest neighbors, surface normal vectors, local thickness and potential field lines. All approaches were applied to manual segmentations of tibia and lateral and medial tibial cartilage performed by experienced raters. The underlying data were contrast agent-enhanced cone-beam C-arm CT reconstructions of one healthy subject's knee. The subject was scanned three times, once in supine position and two times in a standing weight-bearing position. A comparison of the resulting thickness maps shows similar distributions and high correlation coefficients between the approaches above 0.90. The nearest neighbor method results on average in the lowest cartilage thickness values, while the local thickness approach assigns the highest values. We showed that the different methods agree in their thickness distribution. The results will be used for a future evaluation of cartilage change under weight-bearing conditions.


Assuntos
Cartilagem Articular/anatomia & histologia , Tíbia/anatomia & histologia , Tomografia Computadorizada de Feixe Cônico , Meios de Contraste , Voluntários Saudáveis , Humanos , Articulação do Joelho/anatomia & histologia , Masculino , Pessoa de Meia-Idade , Decúbito Dorsal , Suporte de Carga
7.
BMC Evol Biol ; 17(1): 86, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335721

RESUMO

BACKGROUND: From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. RESULTS: We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. CONCLUSIONS: Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/classificação , Mamíferos/genética , Animais , Evolução Biológica , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Extremidades/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/crescimento & desenvolvimento , Transcriptoma , Asas de Animais
8.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179517

RESUMO

Multiple mammalian lineages independently evolved a definitive mammalian middle ear (DMME) through breakdown of Meckel's cartilage (MC). However, the cellular and molecular drivers of this evolutionary transition remain unknown for most mammal groups. Here, we identify such drivers in the living marsupial opossum Monodelphis domestica, whose MC transformation during development anatomically mirrors the evolutionary transformation observed in fossils. Specifically, we link increases in cellular apoptosis and TGF-BR2 signalling to MC breakdown in opossums. We demonstrate that a simple change in TGF-ß signalling is sufficient to inhibit MC breakdown during opossum development, indicating that changes in TGF-ß signalling might be key during mammalian evolution. Furthermore, the apoptosis that we observe during opossum MC breakdown does not seemingly occur in mouse, consistent with homoplastic DMME evolution in the marsupial and placental lineages.


Assuntos
Ossículos da Orelha/anatomia & histologia , Orelha Média/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Animais , Evolução Biológica , Fósseis , Mamíferos , Camundongos , Monodelphis , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Reprod Toxicol ; 70: 126-132, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28130151

RESUMO

From 1957 to 1962, thalidomide caused birth defects in >10,000 children. While the drug was pulled from the market, thalidomide is currently prescribed to treat conditions including leprosy. As a result, a new generation of babies with thalidomide defects is being born in the developing world. This represents a serious problem, as the mechanisms by which thalidomide disrupts development remain unresolved. This lack of resolution is due, in part, to the absence of an appropriate mammalian model for thalidomide teratogenesis. We test the hypothesis that opossum (Monodelphis domestica) is well suited to model human thalidomide defects. Results suggest that opossum embryos exposed to thalidomide display a range of phenotypes (e.g., heart, craniofacial, limb defects) and penetrance similar to humans. Furthermore, all opossums with thalidomide defects exhibit vascular disruptions. Results therefore support the hypotheses that opossums make a good mammalian model for thalidomide teratogenesis, and that thalidomide can severely disrupt angiogenesis in mammals.


Assuntos
Embrião de Mamíferos/efeitos dos fármacos , Modelos Animais , Gambás , Teratogênicos/toxicidade , Talidomida/toxicidade , Anormalidades Induzidas por Medicamentos , Animais , Embrião de Mamíferos/anormalidades , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Neovascularização Fisiológica/efeitos dos fármacos , Gravidez , Teratogênese/efeitos dos fármacos
10.
Dev Genes Evol ; 226(3): 235-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27194412

RESUMO

A fundamental question in biology is "how is growth differentially regulated during development to produce organs of particular sizes?" We used a new model system for the study of differential organ growth, the limbs of the opossum (Monodelphis domestica), to investigate the cellular and molecular basis of differential organ growth in mammals. Opossum forelimbs grow much faster than hindlimbs, making opossum limbs an exceptional system with which to study differential growth. We first used the great differences in opossum forelimb and hindlimb growth to identify cellular processes and molecular signals that underlie differential limb growth. We then used organ culture and pharmacological addition of FGF ligands and inhibitors to test the role of the Fgf/Mitogen-activated protein kinases (MAPK) signaling pathway in driving these cellular processes. We found that molecular signals from within the limb drive differences in cell proliferation that contribute to the differential growth of the forelimb and hindlimbs of opossums. We also found that alterations in the Fgf/MAPK pathway can generate differences in cell proliferation that mirror those observed between wild-type forelimb and hindlimbs of opossums and that manipulation of Fgf/MAPK signaling affects downstream focal adhesion-extracellular matrix (FA-ECM) and Wnt signaling in opossum limbs. Taken together, these findings suggest that evolutionary changes in the Fgf/MAPK pathway could help drive the observed differences in cell behaviors and growth in opossum forelimb and hindlimbs.


Assuntos
Membro Anterior/crescimento & desenvolvimento , Membro Posterior/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases , Monodelphis/crescimento & desenvolvimento , Animais , Morte Celular , Proliferação de Células , Fatores de Crescimento de Fibroblastos/metabolismo , Membro Anterior/citologia , Membro Anterior/metabolismo , Membro Posterior/citologia , Membro Posterior/metabolismo , Monodelphis/metabolismo
11.
PLoS Genet ; 11(8): e1005398, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26317994

RESUMO

Variation among individuals is a prerequisite of evolution by natural selection. As such, identifying the origins of variation is a fundamental goal of biology. We investigated the link between gene interactions and variation in gene expression among individuals and species using the mammalian limb as a model system. We first built interaction networks for key genes regulating early (outgrowth; E9.5-11) and late (expansion and elongation; E11-13) limb development in mouse. This resulted in an Early (ESN) and Late (LSN) Stage Network. Computational perturbations of these networks suggest that the ESN is more robust. We then quantified levels of the same key genes among mouse individuals and found that they vary less at earlier limb stages and that variation in gene expression is heritable. Finally, we quantified variation in gene expression levels among four mammals with divergent limbs (bat, opossum, mouse and pig) and found that levels vary less among species at earlier limb stages. We also found that variation in gene expression levels among individuals and species are correlated for earlier and later limb development. In conclusion, results are consistent with the robustness of the ESN buffering among-individual variation in gene expression levels early in mammalian limb development, and constraining the evolution of early limb development among mammalian species.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Botões de Extremidades/embriologia , Animais , Evolução Biológica , Quirópteros/genética , Simulação por Computador , Extremidades/crescimento & desenvolvimento , Expressão Gênica/genética , Variação Genética/genética , Botões de Extremidades/citologia , Botões de Extremidades/crescimento & desenvolvimento , Camundongos , Gambás/genética , Seleção Genética , Suínos/genética
12.
Birth Defects Res A Clin Mol Teratol ; 103(3): 225-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25656823

RESUMO

BACKGROUND: Retinoic acid (RA) is a vitamin A derivative. Exposure to exogenous RA generates congenital limb malformations (CLMs) in species from frogs to humans. These CLMs include but are not limited to oligodactyly and long-bone hypoplasia. The processes by which exogenous RA induces CLMs in mammals have been best studied in mouse, but as of yet remain unresolved. METHODS: We investigated the impact of exogenous RA on the cellular and molecular development of the limbs of a nonrodent model mammal, the opossum Monodelphis domestica. Opossums exposed to exogenous retinoic acid display CLMs including oligodactly, and results are consistent with opossum development being more susceptible to RA-induced disruptions than mouse development. RESULTS: Exposure of developing opossums to exogenous RA leads to an increase in cell death in the limb mesenchyme that is most pronounced in the zone of polarizing activity, and a reduction in cell proliferation throughout the limb mesenchyme. Exogenous RA also disrupts the expression of Shh in the zone of polarizing activity, and Fgf8 in the apical ectodermal ridge, and other genes with roles in the regulation of limb development and cell death. CONCLUSION: Results are consistent with RA inducing CLMs in opossum limbs by disrupting the functions of the apical ectodermal ridge and zone of polarizing activity, and driving an increase in cell death and reduction of cell proliferation in the mesenchyme of the developing limb.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ectoderma , Membro Posterior , Ceratolíticos/efeitos adversos , Gambás , Tretinoína/efeitos adversos , Animais , Morte Celular/efeitos dos fármacos , Ectoderma/anormalidades , Ectoderma/embriologia , Membro Posterior/anormalidades , Membro Posterior/embriologia , Ceratolíticos/farmacologia , Gambás/anormalidades , Gambás/embriologia , Tretinoína/farmacologia
13.
Nature ; 511(7507): 41-5, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24990742

RESUMO

A reduction in the number of digits has evolved many times in tetrapods, particularly in cursorial mammals that travel over deserts and plains, yet the underlying developmental mechanisms have remained elusive. Here we show that digit loss can occur both during early limb patterning and at later post-patterning stages of chondrogenesis. In the 'odd-toed' jerboa (Dipus sagitta) and horse and the 'even-toed' camel, extensive cell death sculpts the tissue around the remaining toes. In contrast, digit loss in the pig is orchestrated by earlier limb patterning mechanisms including downregulation of Ptch1 expression but no increase in cell death. Together these data demonstrate remarkable plasticity in the mechanisms of vertebrate limb evolution and shed light on the complexity of morphological convergence, particularly within the artiodactyl lineage.


Assuntos
Evolução Biológica , Padronização Corporal , Condrogênese , Extremidades/anatomia & histologia , Extremidades/embriologia , Mamíferos/anatomia & histologia , Mamíferos/embriologia , Animais , Padronização Corporal/genética , Camelus/anatomia & histologia , Camelus/embriologia , Morte Celular , Condrogênese/genética , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas de Homeodomínio/genética , Cavalos/anatomia & histologia , Cavalos/embriologia , Mamíferos/genética , Camundongos , Proteínas Oncogênicas/genética , Receptores Patched , Receptor Patched-1 , Filogenia , Receptores de Superfície Celular/genética , Roedores/anatomia & histologia , Roedores/embriologia , Suínos/anatomia & histologia , Suínos/embriologia , Transativadores/genética , Proteína GLI1 em Dedos de Zinco
14.
PLoS One ; 8(1): e55528, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383217

RESUMO

The intervertebral disc (IVD) is composed of 3 main structures, the collagenous annulus fibrosus (AF), which surrounds the gel-like nucleus pulposus (NP), and hyaline cartilage endplates, which are attached to the vertebral bodies. An IVD is located between each vertebral body. Degeneration of the IVD is thought to be a major cause of back pain, a potentially chronic condition for which there exist few effective treatments. The NP forms from the embryonic notochord. Foxa1 and Foxa2, transcription factors in the forkhead box family, are expressed early during notochord development. However, embryonic lethality and the absence of the notochord in Foxa2 null mice have precluded the study of potential roles these genes may play during IVD formation. Using a conditional Foxa2 allele in conjunction with a tamoxifen-inducible Cre allele (ShhcreER(T2)), we removed Foxa2 from the notochord of E7.5 mice null for Foxa1. Foxa1(-/-);Foxa2(c/c);ShhcreER(T2) double mutant animals had a severely deformed nucleus pulposus, an increase in cell death in the tail, decreased hedgehog signaling, defects in the notochord sheath, and aberrant dorsal-ventral patterning of the neural tube. Embryos lacking only Foxa1 or Foxa2 from the notochord were indistinguishable from control animals, demonstrating a functional redundancy for these genes in IVD formation. In addition, we provide in vivo genetic evidence that Foxa genes are required for activation of Shh in the notochord.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Disco Intervertebral/embriologia , Disco Intervertebral/metabolismo , Animais , Morte Celular/genética , Feminino , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Técnicas de Inativação de Genes , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Tubo Neural/metabolismo , Notocorda/embriologia , Notocorda/metabolismo , Organogênese/genética , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
15.
Dev Dyn ; 241(4): 675-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22354863

RESUMO

Deterioration of the intervertebral discs is an unfortunate consequence of aging. The intervertebral disc in mammals is composed of three parts: a jelly-like center called the nucleus pulposus, the cartilaginous annulus fibrosus, and anterior and posterior endplates that attach the discs to vertebrae. To understand the origin of the disc, we have investigated the intervertebral region of chickens. Surprisingly, our comparison of mouse and chicken discs revealed that chicken discs lack nuclei pulposi. In addition, the notochord, which in mice forms nuclei pulposi, was found to persist as a rod-like structure and express Shh throughout chicken embryogenesis. Our fate mapping data indicate that cells originating from the rostral half of each somite are responsible for forming the avian disc while cells in the caudal region of each somite form vertebrae. A histological analysis of mammalian and nonmammalian organisms suggests that nuclei pulposi are only present in mammals.


Assuntos
Galinhas/anatomia & histologia , Disco Intervertebral , Animais , Evolução Biológica , Disco Intervertebral/anatomia & histologia , Disco Intervertebral/citologia , Camundongos
16.
Spine (Phila Pa 1976) ; 36(24): E1555-61, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21278629

RESUMO

STUDY DESIGN: The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. OBJECTIVE: To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. SUMMARY OF BACKGROUND DATA: The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. METHODS: Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. RESULTS: Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. CONCLUSION: Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator 5 de Diferenciação de Crescimento/genética , Disco Intervertebral/metabolismo , Notocorda/metabolismo , Animais , Animais Recém-Nascidos , Padronização Corporal/genética , Feminino , Fator 5 de Diferenciação de Crescimento/deficiência , Hibridização In Situ , Disco Intervertebral/embriologia , Disco Intervertebral/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Notocorda/embriologia , Notocorda/crescimento & desenvolvimento , Fatores de Tempo
17.
Psychother Psychosom Med Psychol ; 59(5): 194-203, 2009 May.
Artigo em Alemão | MEDLINE | ID: mdl-18491244

RESUMO

The acceptance of a treatment depends on what patients experience as helpful or not. In the treatment of anorexia nervosa, the patient's perspective is of special importance as patients are typically highly ambivalent concerning a change in their dysfunctional attitudes and behaviour. 102 patients with anorexia nervosa (ICD-10) evaluated the components of a complex, multimodal treatment programme (inpatient and day clinic) at the end of therapy or follow-up. Overall, psychodynamic as well as symptom-oriented treatment components were experienced as "helpful". Psychodynamic individual sessions received the best assessments. Individual sessions got higher ratings than group sessions. Patients with less successful outcomes described symptom oriented elements like weight goals and work on eating behaviour as significantly less helpful. Lower rankings of some symptom oriented components were associated with more overall symptom severity and bulimic pathology and may point to a feeling of being overtaxed with the programme or a lack of motivation to change.


Assuntos
Anorexia Nervosa/terapia , Hospital Dia , Adulto , Anorexia Nervosa/psicologia , Feminino , Humanos , Aceitação pelo Paciente de Cuidados de Saúde , Pacientes , Psicoterapia , Psicoterapia de Grupo , Resultado do Tratamento , Adulto Jovem
18.
Biochem Biophys Res Commun ; 357(1): 32-7, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17408593

RESUMO

The Mexican axolotl, Ambystoma mexicanum, has been a useful animal model to study heart development and cardiac myofibrillogenesis. A naturally-occurring recessive mutant, gene "c", for cardiac non-function in the Mexican axolotl causes a failure of myofibrillogenesis due to a lack of tropomyosin expression in homozygous mutant (c/c) embryonic hearts. Myofibril-inducing RNA (MIR) rescues mutant hearts in vitro by promoting tropomyosin expression and myofibril formation thereafter. We have studied the effect of MIR on the expression of various isoforms of cardiac troponin T (cTnT), a component of the thin filament that binds with tropomyosin. Four alternatively spliced cTnT isoforms have been characterized from developing axolotl heart. The expression of various cTnT isoforms in normal, mutant, and mutant hearts corrected with MIR, is evaluated by real-time RT-PCR using isoform specific primer pairs; MIR affects the total transcription as well as the splicing of the cTnT in axolotl heart.


Assuntos
Ambystoma mexicanum/embriologia , Coração/embriologia , Miocárdio/metabolismo , Miofibrilas/fisiologia , RNA/metabolismo , Troponina T/genética , Troponina T/metabolismo , Ambystoma mexicanum/genética , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Coração/fisiologia , RNA/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...