Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Cosmet Dermatol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248229

RESUMO

BACKGROUND: The aim of this study was to investigate the protective effect of quercetin loaded on solid lipid nanoparticles (SLN) in protecting human hair from ultraviolet-B (UV-B) light in vitro. METHODS: In this study, solvent-emulsified diffusion method was used to fabricate nanoparticle formulations and then particle size, loading, and drug release tests were performed from different formulations. Variables include oily part proportion, liquid to solid oil part ratio, and surfactant to lipid ratio. The optimal formulation was prepared by examining the eight formulations and optimizing them. Six groups of hair with different treatments were exposed to UV light for 600 h and the changes were investigated by examining four factors: RMS (root mean square average, the microscopic profile peaks and valleys), peak to valley roughness, the amount of chemical changes by Fourier transform infrared spectroscopy (FTIR), and the amount of protein loss. RESULTS: The selected formulation had a suitable particle size, loading percent, and release rate for penetration to hair. Quercetin-loaded SLN controlled RMS factor, peak to valley roughness, and reduced chemical changes and protein loss compared to other treatments. CONCLUSION: The optimize formulation showed positive effects in protecting the hair strands from UV-B radiation.

2.
Burns ; 50(7): 1823-1831, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38918152

RESUMO

INTRODUCTION: Superoxide dismutase (SOD), a natural enzyme with high antioxidant activity, reduces injury and accelerates wound healing by scavenging superoxide radicals. This enzyme plays an important role in cellular defense against oxidative stress such as burn injury. The aim of this study was to load SOD into solid lipid nanoparticles for the treatment of rat burn wounds. METHODS: Solid lipid nanoparticles were prepared by Solvent Emulsification Diffusion method and evaluated for particle size, enzyme activity and enzyme entrapment efficiency. Twenty-seven rats in 3 different groups were induced with deep second-degree burns and then treated with SOD-loaded solid lipid nanoparticles, solid lipid nanoparticles without enzyme, or SOD solution. After the treatment period, the wounds were evaluated macroscopically for the area of healing and microscopically for indices of re-epithelialization, granulation tissue and angiogenesis. RESULTS: The optimized SOD-loaded solid lipid nanoparticles showed a particle size of 35-85 ± 2.41 nm, 78.4 ± 4.31 % entrapment efficiency and 90 % initial enzyme activity. Macroscopic examination showed that the best recovery rate belonged to the solid lipid nanoparticle group. Pathological studies also showed that angiogenesis and granulation tissue were significantly better in this group. Compared to the other two groups, SOD-loaded solid lipid nanoparticles showed a significant improvement in pathological factors, particularly angiogenesis and granulation tissue, as well as a faster reduction in the number of inflammatory cells. CONCLUSION: Based on this study, solid lipid nanoparticles could be used as an effective delivery system for SOD in the treatment of second-degree burns.


Assuntos
Queimaduras , Nanopartículas , Superóxido Dismutase , Cicatrização , Animais , Queimaduras/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/uso terapêutico , Ratos , Cicatrização/efeitos dos fármacos , Masculino , Tamanho da Partícula , Tecido de Granulação/patologia , Tecido de Granulação/efeitos dos fármacos , Lipídeos , Reepitelização/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Wistar , Modelos Animais de Doenças , Antioxidantes/farmacologia
3.
Int J Biol Macromol ; 271(Pt 1): 132670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806083

RESUMO

This study focuses on creating new forms of biomimetic nanofiber composites by combining copolymerizing and electrospinning approaches in the field of nanomedicine. The process involved utilizing the melt polymerization of proline (Pr) and hydroxyl proline (Hyp) to synthesize polymers based on Pr (PPE) and Hyp (PHPE). These polymers were then used in a grafting copolymerization process with chitosan (CS) to produce PHPC (1560 ± 81.08 KDa). A novel electrospun nanofiber scaffold was then produced using PHPC and/or CS, hyaluronic acid, polyvinyl alcohol, and naringenin (NR) as a loading drug. Finally, Mouse Dermal Fibroblast (MDF) cells were introduced to the wound dressing and assessed their therapeutic potential for wound healing in rats. The scaffolds were characterized by FTIR, NMR, DSC, and SEM analysis, which confirmed the amino acid grafting, loading drug, and porous and nanofibrous structures (>225 nm). The results showed that the PHPC-based scaffolds were more effective for swelling/absorption of wound secretions, had more elasticity/elongation, faster drug release, more MDF-cytocompatibility, and antibacterial activity against multidrug-resistant S. aureus compared to CS-based scaffolds. The in vivo studies showed that NR in combination with MDF can accelerate cell migration/proliferation, and remodeling phases of wound healing in both PHPC/CS-based scaffolds. Moreover, PHPC-based scaffolds promote collagen content, and better wound contraction, epithelialization, and neovascularization than CS-based, showing potential as wound-dressing.


Assuntos
Quitosana , Citrus , Flavonoides , Nanofibras , Cicatrização , Quitosana/química , Quitosana/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Citrus/química , Ratos , Nanofibras/química , Camundongos , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Staphylococcus aureus/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Pele/efeitos dos fármacos , Liberação Controlada de Fármacos , Masculino , Portadores de Fármacos/química , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/administração & dosagem
4.
Curr Org Synth ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37936472

RESUMO

AIMS: The aims of this study are to synthesize new derivatives of sodium alginate that improve the inherent properties, such as hydrogel strengthening, and create environmental sensitivity, such as pH sensitivity, for use in drug delivery. BACKGROUND: Today, hydrogels, due to outstanding properties such as biodegradability, biocompatibility, mechanical properties, and response to stimuli properties, are widely used as harmless biomaterials in various fields in drug delivery, wound dressing, and tissue engineering. Stimulus-sensitive polymers significantly respond to slight changes in their environment. Different types of stimuli are used to influence the properties of polymers, the most important of which are temperature and pH because these are two vital factors in the human body; hence, temperature-sensitive and pHsensitive hydrogels have been extensively studied. The ability to absorb water and swell the hydrogel is due to hydrophilic chains in the hydrogel network, and water absorption by hydrogel can be controlled by response to the stimuli. Since hydrogels mimic human tissue, the ability to retain water in them is essential. As a result, it is considered in many biomedical drug delivery systems. Stimulusresponsive swelling can control diffusion out of and into the hydrogel network, which allows temporal and spatial control of drug release. When a drug is loaded onto a biodegradable and stimulisensitive hydrogel, the drug delivery system has the added advantage of sustained release of the drug, which reduces side effects. METHODS: In this study, two different hydrocarbons, [1,3-diaminopropane (DAP)] as a short-chain hydrocarbon, and [1,7-diaminoheptane (DAH)] as a long-chain hydrocarbon were grafted onto three types ofsodium alginate (SA), through amide bond linkages. The hydrogel copolymer matrices were compared with sodium alginate (SA) beads. The graft copolymers were characterized using FTIR, 1HNMR, XRD spectroscopy, elemental analysis (CHNS) and thermal analysis (TGA, DTA and DSC). An environmental scanning electron microscope (ESEM) was used to investigate the surface morphology of hydrogels. RESULTS: Effects of variables such as the length of hydrocarbon chains cross-linked to alginate, temperature, pH, and cross-linkers on the properties of hydrogels investigated in the temperature range of 2-70 ˚C and two different pH values (4.4 and 7.4). The results showed that when the hydrocarbon chain length of diamines decreases, the extent of cross-linking and strength of the hydrogels are increased. Other results suggest that the hydrogels obtained from high-viscosity alginate derivatives had positive pH sensitivity. Hydrogels prepared in this study demonstrated good mechanical and swelling ratios that are necessary for wound dressing. CONCLUSION: DAP-g-SA and DAH-g-SA pH-sensitive hydrogels were successfully synthesized through amide bond linkages. The new synthesis derivatives showed lower swelling levels at low pH (4.4). In contrast, their swelling levels at higher pH (7.4) were significantly enhanced. Higher swelling degree could be obtained at high pH. pH-responsive hydrogels are especially useful for various biological applications due to their unique feature of controlled swelling, biodegradability, biocompatibility, and fluid retention in their network structures. pH-responsive hydrogels, as intelligent systems, can be used in controlled-release drug delivery systems such as insulin delivery.

5.
Drug Deliv Transl Res ; 13(4): 1035-1047, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36477776

RESUMO

Glaucoma is a chronic eye disease in which the pressure inside the eye increases and leads to damage to the optic nerve, and eventually causes blindness. In this disease, it is often necessary to use a multi-drug treatment system. There is a fixed combination of timolol maleate and brimonidine tartrate among the combination drugs in glaucoma treatment. Liposomes are one of the most important targeted drug delivery systems to eye tissue, which leads to improved drug permeability and durability in ocular tissue. In this study, thin layer hydration was used to make liposomal formulations containing timolol maleate (TM) and brimonidine tartrate (BT). After the necessary evaluations, one of the eight initial formulations was selected as an optimization formulation. Then, characteristics such as drug loading percentage, particle size, pH, zeta potential, and drug release were performed on the optimized formulation. The study of reducing intraocular pressure was performed on the optimized formulation. This study in total was performed on 18 rabbits in three groups. Hydroxypropyl methylcellulose (HPMC) polymer was injected into the anterior chamber to experimental induce glaucoma. The selected formulation was within the acceptable range of ocular products in terms of physical properties. HPMC polymer injection successfully induced glaucoma in the animal model, resulting in a 79% increase in intraocular pressure. The results showed that the liposomal formulation significantly reduced the intraocular pressure compared to the simple formulation of the aqueous solution, and both formulations were able to significantly reduce the intraocular pressure compared to the control group (P < 0.001). The results also showed that liposomal formulation has a therapeutic effect in reducing intraocular pressure. It seems that the selected liposomal formulation made by thin layer hydration can act as a suitable drug carrier to increase the effectiveness of the fixed combination of timolol maleate and brimonidine tartrate and be proposed as a new drug formulation for targeted and controlled drug delivery in the treatment of glaucoma.


Assuntos
Glaucoma , Timolol , Animais , Coelhos , Timolol/uso terapêutico , Tartarato de Brimonidina/uso terapêutico , Lipossomos/uso terapêutico , Quinoxalinas/uso terapêutico , Glaucoma/tratamento farmacológico , Pressão Intraocular , Polímeros/uso terapêutico , Anti-Hipertensivos
6.
Eur J Pharm Sci ; 167: 105991, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517103

RESUMO

Vancomycin (VCM) is a drug of choice for treating infections caused by Staphylococcus species, reported being the most causative agent of bacterial endophthalmitis. However, the ocular bioavailability of topically applied VCM is low due to its high molecular weight and hydrophilicity. The current study sought to explore whether the nanostructured lipid carriers (NLCs) fabricated via cold homogenization technique could improve ocular penetration and prolong the ophthalmic residence of VCM. A 23 full factorial design was adopted to evaluate the influence of different process and formulation variables on VCM-loaded NLC formulae. The optimized formula with the particle size of 96.4 ±â€¯0.71 nm and narrow size distribution showed spherical morphology obtained by AFM and represented sustained drug release up to 67% in 48 h fitted to the Korsmeyer-Peppas model with probably non-Fickian diffusion kinetic. FTIR studies visualized the drug-carrier interactions in great detail. High encapsulation of VCM (74.8 ±â€¯4.3% w/w) in NLC has been established in DSC and PXRD analysis. The optimal positively charged (+ 29.7 ±â€¯0.47 mV) colloidal dispersion was also stable for 12 weeks at both 4 °C and 25 °C. According to in vivo studies, incorporation of VCM in NLC resulted in a nearly 3-fold increase in the intravitreal concentration of VCM after eye-drop instillation over control groups. Besides, microbiological evaluation admitted its therapeutic effect within five days is comparable to intravitreal injection of VCM. Further, the optimized formula was found to be nonirritant and safe for ophthalmic administration in RBC hemolytic assay. Also, fluorescent tracking of NLCs on rabbit's cornea showed an increase in corneal penetration of nanoparticles. Thus, it is possible to infer that the evolved NLCs are promising drug delivery systems with superior attainments for enhanced Vancomycin ophthalmic delivery to the eye's posterior segment and improved bacterial endophthalmitis management.


Assuntos
Endoftalmite , Vancomicina , Animais , Portadores de Fármacos , Endoftalmite/tratamento farmacológico , Injeções Intravítreas , Lipídeos , Coelhos
7.
J Pharm Pharm Sci ; 21(1): 143-159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29789104

RESUMO

PURPOSE: Silibinin, is a natural compound, which has shown anticancer activity in various malignancies. In this study, we evaluated the anticancer effects of silibinin in B16-F10 melanoma cells and developed a novel thermoresponsive hydrogel for local delivery of this compound. METHOD: A thermoresponsive hydrogel loaded with silibinin was prepared using triblock copolymers of poly[(α-benzyl carboxylate-e-caprolactone)-co-(α-carboxyl-e-caprolactone)]ran-b-PEG-b-[(α-benzyl carboxylate-e-caprolactone) -co-(α-carboxyl-e-caprolactone)]ran (PCBCL-b-PEG-b-PCBCL), namely PolyGelTM, and compared with a Pluronic F-127 formulation of silibinin. Sol-gel transition temperature of hydrogels was measured by inverse flow method and modulated differential scanning calorimetry (MDSC). Silibinin loading efficiency was measured by HPLC. The MTT and clonogenic assays were used to assess the cytotoxicity and anti-proliferative effects of silibinin on B16-F10 melanoma cells. Flow cytotmetry was used to quantify the induced level of apoptosis and measure the intracellular level of activated STAT3 (pSTAT3) following silibinin treatment in B16.F10 cells. The effects of silibinin on the activation of oncogenic proteins were also evaluated by western blot. RESULTS: Silibinin inhibited cell proliferation (IC50 = 67 µM), provoked cell cycle arrest, induced apoptosis, suppressed key oncogenic pathways (i.e STAT3 and MEK/ERK), and enhanced the cytotoxic effects of doxorubicin in B16-F10 cells. Both PolyGelTM and Pluronic F-127 hydrogels were effective in loading silibinin. A lower drug release pattern within 24h, fitting first- order release kinetics, was observed for the release of silibinin from both gels compared to free drug.  PolyGelTM demonstrated enhanced percutaneous absorption of silibinin through increasing mouse skin intracellular lipid fluidity as documented by DSC of skin following PolyGelTM use. Silibinin loaded in PolyGel TM inhibited the growth of B16-F10 cells (IC50 = 30 µM) and effectively suppressed pSTAT3 activity in B16-F10 cells at 10 µM. CONCLUSION: Our results imply a great potential for PolyGel TM formulations of silibinin for local treatment of malignant melanoma. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's content page.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Caproatos/química , Lactonas/química , Melanoma/tratamento farmacológico , Polietilenoglicóis/química , Silibina/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Temperatura , Animais , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Hidrogéis/química , Hidrogéis/farmacologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Silibina/química , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
8.
Expert Opin Drug Deliv ; 15(4): 397-418, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29261332

RESUMO

INTRODUCTION: Immunosuppression is the mainstay therapy in organ transplantation and autoimmune diseases. The effective clinical application of immunosuppressive agents has suffered from the emergence of systemic immunosuppression and/or individual drug side effects. Nanotechnology approaches may be used to modify the mentioned shortcomings by enhancing the delivery of immunosuppressants to target cells of the immune system, thus reducing the required dose for function, and/or reducing drug distribution to non-target tissues. AREAS COVERED: We provide an overview on the development of nanotechnology products for the most commonly used immunosuppressive agents. At first, the rationale for the use of nanoparticles as means for immunosuppressive therapy is discussed. This is followed by a review of major accomplishments in this area, particularly in preclinical in vivo studies. EXPERT OPINION: The results of research conducted in this area to date, points to a great promise for nano-medicine in increasing the bioavailability, reducing the toxicity, and/or potentiating the activity of immunosuppressive agents. It is, therefore, safe to speculate the more rapid translation of nanotechnologyin clinical immunosuppressive therapy in the near future providing to the overcoming of hurdles associated with nano-drug delivery such as high cost, inadequate reproducibility and potential safety concerns of the delivery systems themselves.


Assuntos
Sistemas de Liberação de Medicamentos , Imunossupressores/administração & dosagem , Nanomedicina , Nanopartículas/administração & dosagem , Pesquisa Biomédica , Ciclosporina/administração & dosagem , Glucocorticoides/administração & dosagem , Humanos , Metotrexato/administração & dosagem , Ácido Micofenólico/administração & dosagem , Tacrolimo/administração & dosagem
9.
J Tradit Complement Med ; 6(1): 37-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26870678

RESUMO

The blood-red sap of Dragon's blood has been used in folk medicine for fractures, wounds, inflammation, gastrointestinal disorders, rheumatism, blood circulation dysfunctions, and cancer. Existing in vitro and in vivo bioactivity of this herb on different mechanisms of healing shows strong potential of this sap in wound healing. This clinical trial study was designated to evaluate the wound healing effect of Dragon's blood on human wounds. Sixty patients, between the ages of 14-65 years, who were referred to remove their skin tag, were assigned to this double-blind, placebo-controlled, randomized clinical trial and received either Dragon's blood or a placebo cream. They were visited on the 3rd, 5th, 7th, 10th, 14th, and 20th day of the trial to check the process of healing and to measure the wound's surface. At the end of trial, there was a significant difference in the mean duration of wound healing between the two groups (p = 0.0001). The phenolic compounds and the alkaloid taspine, which exist in Dragon's-blood resin, are probably the main reasons for the wound healing property of this plant. Being natural accessible, safe, and affordable makes Dragon's blood cream, a good choice for addition to the wound healing armamentarium. Further studies on wounds with different causes and among larger populations are suggested to ensure the effectiveness and safety of Dragon's blood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...