Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 12378, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811643

RESUMO

The accurate prediction of in-hospital mortality in Asian women after ST-Elevation Myocardial Infarction (STEMI) remains a crucial issue in medical research. Existing models frequently neglect this demographic's particular attributes, resulting in poor treatment outcomes. This study aims to improve the prediction of in-hospital mortality in multi-ethnic Asian women with STEMI by employing both base and ensemble machine learning (ML) models. We centred on the development of demographic-specific models using data from the Malaysian National Cardiovascular Disease Database spanning 2006 to 2016. Through a careful iterative feature selection approach that included feature importance and sequential backward elimination, significant variables such as systolic blood pressure, Killip class, fasting blood glucose, beta-blockers, angiotensin-converting enzyme inhibitors (ACE), and oral hypoglycemic medications were identified. The findings of our study revealed that ML models with selected features outperformed the conventional Thrombolysis in Myocardial Infarction (TIMI) Risk score, with area under the curve (AUC) ranging from 0.60 to 0.93 versus TIMI's AUC of 0.81. Remarkably, our best-performing ensemble ML model was surpassed by the base ML model, support vector machine (SVM) Linear with SVM selected features (AUC: 0.93, CI: 0.89-0.98 versus AUC: 0.91, CI: 0.87-0.96). Furthermore, the women-specific model outperformed a non-gender-specific STEMI model (AUC: 0.92, CI: 0.87-0.97). Our findings demonstrate the value of women-specific ML models over standard approaches, emphasizing the importance of continued testing and validation to improve clinical care for women with STEMI.


Assuntos
Mortalidade Hospitalar , Aprendizado de Máquina , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Feminino , Infarto do Miocárdio com Supradesnível do Segmento ST/mortalidade , Pessoa de Meia-Idade , Idoso , Máquina de Vetores de Suporte , Malásia/epidemiologia , Povo Asiático , Fatores de Risco
3.
PLoS One ; 19(2): e0298036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358964

RESUMO

BACKGROUND: Traditional risk assessment tools often lack accuracy when predicting the short- and long-term mortality following a non-ST-segment elevation myocardial infarction (NSTEMI) or Unstable Angina (UA) in specific population. OBJECTIVE: To employ machine learning (ML) and stacked ensemble learning (EL) methods in predicting short- and long-term mortality in Asian patients diagnosed with NSTEMI/UA and to identify the associated features, subsequently evaluating these findings against established risk scores. METHODS: We analyzed data from the National Cardiovascular Disease Database for Malaysia (2006-2019), representing a diverse NSTEMI/UA Asian cohort. Algorithm development utilized in-hospital records of 9,518 patients, 30-day data from 7,133 patients, and 1-year data from 7,031 patients. This study utilized 39 features, including demographic, cardiovascular risk, medication, and clinical features. In the development of the stacked EL model, four base learner algorithms were employed: eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest (RF), with the Generalized Linear Model (GLM) serving as the meta learner. Significant features were chosen and ranked using ML feature importance with backward elimination. The predictive performance of the algorithms was assessed using the area under the curve (AUC) as a metric. Validation of the algorithms was conducted against the TIMI for NSTEMI/UA using a separate validation dataset, and the net reclassification index (NRI) was subsequently determined. RESULTS: Using both complete and reduced features, the algorithm performance achieved an AUC ranging from 0.73 to 0.89. The top-performing ML algorithm consistently surpassed the TIMI risk score for in-hospital, 30-day, and 1-year predictions (with AUC values of 0.88, 0.88, and 0.81, respectively, all p < 0.001), while the TIMI scores registered significantly lower at 0.55, 0.54, and 0.61. This suggests the TIMI score tends to underestimate patient mortality risk. The net reclassification index (NRI) of the best ML algorithm for NSTEMI/UA patients across these periods yielded an NRI between 40-60% (p < 0.001) relative to the TIMI NSTEMI/UA risk score. Key features identified for both short- and long-term mortality included age, Killip class, heart rate, and Low-Molecular-Weight Heparin (LMWH) administration. CONCLUSIONS: In a broad multi-ethnic population, ML approaches outperformed conventional TIMI scoring in classifying patients with NSTEMI and UA. ML allows for the precise identification of unique characteristics within individual Asian populations, improving the accuracy of mortality predictions. Continuous development, testing, and validation of these ML algorithms holds the promise of enhanced risk stratification, thereby revolutionizing future management strategies and patient outcomes.


Assuntos
Infarto do Miocárdio sem Supradesnível do Segmento ST , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico , Heparina de Baixo Peso Molecular , Ciência de Dados , Teorema de Bayes , Angina Instável , Medição de Risco , Arritmias Cardíacas
4.
Health Informatics J ; 29(4): 14604582231218530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019888

RESUMO

The paediatric orthopaedic expert system analyses and predicts the healing time of limb fractures in children using machine learning. As far we know, no published research on the paediatric orthopaedic expert system that predicts paediatric fracture healing time using machine learning has been published. The University Malaya Medical Centre (UMMC) offers paediatric orthopaedic data, comprises children under the age of 12 radiographs limb fractures with ages recorded from the date and time of initial trauma. SVR algorithms are used to predict and discover variables associated with fracture healing time. This study developed an expert system capable of predicting healing time, which can assist general practitioners and healthcare practitioners during treatment and follow-up. The system is available online at https://kidsfractureexpert.com/.


Assuntos
Ortopedia , Humanos , Criança , Sistemas Inteligentes , Consolidação da Fratura , Malásia
5.
Lancet Reg Health West Pac ; 35: 100742, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37424687

RESUMO

Background: Cardiovascular risk prediction models incorporate myriad CVD risk factors. Current prediction models are developed from non-Asian populations, and their utility in other parts of the world is unknown. We validated and compared the performance of CVD risk prediction models in an Asian population. Methods: Four validation groups were extracted from a longitudinal community-based study dataset of 12,573 participants aged ≥18 years to validate the Framingham Risk Score (FRS), Systematic COronary Risk Evaluation 2 (SCORE2), Revised Pooled Cohort Equations (RPCE), and World Health Organization cardiovascular disease (WHO CVD) models. Two measures of validation are examined: discrimination and calibration. Outcome of interest was 10-year risk of CVD events (fatal and non-fatal). SCORE2 and RPCE performances were compared to SCORE and PCE, respectively. Findings: FRS (AUC = 0.750) and RPCE (AUC = 0.752) showed good discrimination in CVD risk prediction. Although FRS and RPCE have poor calibration, FRS demonstrates smaller discordance for FRS vs. RPCE (298% vs. 733% in men, 146% vs. 391% in women). Other models had reasonable discrimination (AUC = 0.706-0.732). Only SCORE2-Low, -Moderate and -High (aged <50) had good calibration (X2 goodness-of-fit, P-value = 0.514, 0.189, 0.129, respectively). SCORE2 and RPCE showed improvements compared to SCORE (AUC = 0.755 vs. 0.747, P-value <0.001) and PCE (AUC = 0.752 vs. 0.546, P-value <0.001), respectively. Almost all risk models overestimated 10-year CVD risk by 3%-1430%. Interpretation: In Malaysians, RPCE are evaluated be the most clinically useful to predict CVD risk. Additionally, SCORE2 and RPCE outperformed SCORE and PCE, respectively. Funding: This work was supported by the Malaysian Ministry of Science, Technology, and Innovation (MOSTI) (Grant No: TDF03211036).

6.
PLoS One ; 17(12): e0278944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36508425

RESUMO

BACKGROUND: Conventional risk score for predicting in-hospital mortality following Acute Coronary Syndrome (ACS) is not catered for Asian patients and requires different types of scoring algorithms for STEMI and NSTEMI patients. OBJECTIVE: To derive a single algorithm using deep learning and machine learning for the prediction and identification of factors associated with in-hospital mortality in Asian patients with ACS and to compare performance to a conventional risk score. METHODS: The Malaysian National Cardiovascular Disease Database (NCVD) registry, is a multi-ethnic, heterogeneous database spanning from 2006-2017. It was used for in-hospital mortality model development with 54 variables considered for patients with STEMI and Non-STEMI (NSTEMI). Mortality prediction was analyzed using feature selection methods with machine learning algorithms. Deep learning algorithm using features selected from machine learning was compared to Thrombolysis in Myocardial Infarction (TIMI) score. RESULTS: A total of 68528 patients were included in the analysis. Deep learning models constructed using all features and selected features from machine learning resulted in higher performance than machine learning and TIMI risk score (p < 0.0001 for all). The best model in this study is the combination of features selected from the SVM algorithm with a deep learning classifier. The DL (SVM selected var) algorithm demonstrated the highest predictive performance with the least number of predictors (14 predictors) for in-hospital prediction of STEMI patients (AUC = 0.96, 95% CI: 0.95-0.96). In NSTEMI in-hospital prediction, DL (RF selected var) (AUC = 0.96, 95% CI: 0.95-0.96, reported slightly higher AUC compared to DL (SVM selected var) (AUC = 0.95, 95% CI: 0.94-0.95). There was no significant difference between DL (SVM selected var) algorithm and DL (RF selected var) algorithm (p = 0.5). When compared to the DL (SVM selected var) model, the TIMI score underestimates patients' risk of mortality. TIMI risk score correctly identified 13.08% of the high-risk patient's non-survival vs 24.7% for the DL model and 4.65% vs 19.7% of the high-risk patient's non-survival for NSTEMI. Age, heart rate, Killip class, cardiac catheterization, oral hypoglycemia use and antiarrhythmic agent were found to be common predictors of in-hospital mortality across all ML feature selection models in this study. The final algorithm was converted into an online tool with a database for continuous data archiving for prospective validation. CONCLUSIONS: ACS patients were better classified using a combination of machine learning and deep learning in a multi-ethnic Asian population when compared to TIMI scoring. Machine learning enables the identification of distinct factors in individual Asian populations to improve mortality prediction. Continuous testing and validation will allow for better risk stratification in the future, potentially altering management and outcomes.


Assuntos
Síndrome Coronariana Aguda , Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/epidemiologia , Mortalidade Hospitalar , Inteligência Artificial , Fatores de Risco , Medição de Risco
7.
Sci Rep ; 12(1): 17592, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266376

RESUMO

Limited research has been conducted in Asian elderly patients (aged 65 years and above) for in-hospital mortality prediction after an ST-segment elevation myocardial infarction (STEMI) using Deep Learning (DL) and Machine Learning (ML). We used DL and ML to predict in-hospital mortality in Asian elderly STEMI patients and compared it to a conventional risk score for myocardial infraction outcomes. Malaysia's National Cardiovascular Disease Registry comprises an ethnically diverse Asian elderly population (3991 patients). 50 variables helped in establishing the in-hospital death prediction model. The TIMI score was used to predict mortality using DL and feature selection methods from ML algorithms. The main performance metric was the area under the receiver operating characteristic curve (AUC). The DL and ML model constructed using ML feature selection outperforms the conventional risk scoring score, TIMI (AUC 0.75). DL built from ML features (AUC ranging from 0.93 to 0.95) outscored DL built from all features (AUC 0.93). The TIMI score underestimates mortality in the elderly. TIMI predicts 18.4% higher mortality than the DL algorithm (44.7%). All ML feature selection algorithms identify age, fasting blood glucose, heart rate, Killip class, oral hypoglycemic agent, systolic blood pressure, and total cholesterol as common predictors of mortality in the elderly. In a multi-ethnic population, DL outperformed the TIMI risk score in classifying elderly STEMI patients. ML improves death prediction by identifying separate characteristics in older Asian populations. Continuous testing and validation will improve future risk classification, management, and results.


Assuntos
Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Idoso , Mortalidade Hospitalar , Medição de Risco/métodos , Glicemia , Prognóstico , Fatores de Risco , Algoritmos , Hospitais , Hipoglicemiantes , Colesterol
8.
PLoS One ; 16(8): e0254894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339432

RESUMO

BACKGROUND: Conventional risk score for predicting short and long-term mortality following an ST-segment elevation myocardial infarction (STEMI) is often not population specific. OBJECTIVE: Apply machine learning for the prediction and identification of factors associated with short and long-term mortality in Asian STEMI patients and compare with a conventional risk score. METHODS: The National Cardiovascular Disease Database for Malaysia registry, of a multi-ethnic, heterogeneous Asian population was used for in-hospital (6299 patients), 30-days (3130 patients), and 1-year (2939 patients) model development. 50 variables were considered. Mortality prediction was analysed using feature selection methods with machine learning algorithms and compared to Thrombolysis in Myocardial Infarction (TIMI) score. Invasive management of varying degrees was selected as important variables that improved mortality prediction. RESULTS: Model performance using a complete and reduced variable produced an area under the receiver operating characteristic curve (AUC) from 0.73 to 0.90. The best machine learning model for in-hospital, 30 days, and 1-year outperformed TIMI risk score (AUC = 0.88, 95% CI: 0.846-0.910; vs AUC = 0.81, 95% CI:0.772-0.845, AUC = 0.90, 95% CI: 0.870-0.935; vs AUC = 0.80, 95% CI: 0.746-0.838, AUC = 0.84, 95% CI: 0.798-0.872; vs AUC = 0.76, 95% CI: 0.715-0.802, p < 0.0001 for all). TIMI score underestimates patients' risk of mortality. 90% of non-survival patients are classified as high risk (>50%) by machine learning algorithm compared to 10-30% non-survival patients by TIMI. Common predictors identified for short- and long-term mortality were age, heart rate, Killip class, fasting blood glucose, prior primary PCI or pharmaco-invasive therapy and diuretics. The final algorithm was converted into an online tool with a database for continuous data archiving for algorithm validation. CONCLUSIONS: In a multi-ethnic population, patients with STEMI were better classified using the machine learning method compared to TIMI scoring. Machine learning allows for the identification of distinct factors in individual Asian populations for better mortality prediction. Ongoing continuous testing and validation will allow for better risk stratification and potentially alter management and outcomes in the future.


Assuntos
Povo Asiático , Aprendizado de Máquina , Infarto do Miocárdio com Supradesnível do Segmento ST/mortalidade , Área Sob a Curva , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes , Fatores de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Trombose/complicações , Fatores de Tempo
9.
PeerJ ; 8: e8286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206445

RESUMO

BACKGROUND: This study assesses the feasibility of using machine learning methods such as Random Forests (RF), Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Self-Organizing Feature Maps (SOM) to identify and determine factors associated with hypertensive patients' adherence levels. Hypertension is the medical term for systolic and diastolic blood pressure higher than 140/90 mmHg. A conventional medication adherence scale was used to identify patients' adherence to their prescribed medication. Using machine learning applications to predict precise numeric adherence scores in hypertensive patients has not yet been reported in the literature. METHODS: Data from 160 hypertensive patients from a tertiary hospital in Kuala Lumpur, Malaysia, were used in this study. Variables were ranked based on their significance to adherence levels using the RF variable importance method. The backward elimination method was then performed using RF to obtain the variables significantly associated with the patients' adherence levels. RF, SVR and ANN models were developed to predict adherence using the identified significant variables. Visualizations of the relationships between hypertensive patients' adherence levels and variables were generated using SOM. RESULT: Machine learning models constructed using the selected variables reported RMSE values of 1.42 for ANN, 1.53 for RF, and 1.55 for SVR. The accuracy of the dichotomised scores, calculated based on a percentage of correctly identified adherence values, was used as an additional model performance measure, resulting in accuracies of 65% (ANN), 78% (RF) and 79% (SVR), respectively. The Wilcoxon signed ranked test reported that there was no significant difference between the predictions of the machine learning models and the actual scores. The significant variables identified from the RF variable importance method were educational level, marital status, General Overuse, monthly income, and Specific Concern. CONCLUSION: This study suggests an effective alternative to conventional methods in identifying the key variables to understand hypertensive patients' adherence levels. This can be used as a tool to educate patients on the importance of medication in managing hypertension.

10.
BMC Bioinformatics ; 17(Suppl 19): 499, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28155649

RESUMO

BACKGROUND: Cephalometric analysis and measurements of skull parameters using X-Ray images plays an important role in predicating and monitoring orthodontic treatment. Manual analysis and measurements of cephalometric is considered tedious, time consuming, and subjected to human errors. Several cephalometric systems have been developed to automate the cephalometric procedure; however, no clear insights have been reported about reliability, performance, and usability of those systems. This study utilizes some techniques to evaluate reliability, performance, and usability metric using SUS methods of the developed cephalometric system which has not been reported in previous studies. METHODS: In this study a novel system named Ceph-X is developed to computerize the manual tasks of orthodontics during cephalometric measurements. Ceph-X is developed by using image processing techniques with three main models: enhancements X-ray image model, locating landmark model, and computation model. Ceph-X was then evaluated by using X-ray images of 30 subjects (male and female) obtained from University of Malaya hospital. Three orthodontics specialists were involved in the evaluation of accuracy to avoid intra examiner error, and performance for Ceph-X, and 20 orthodontics specialists were involved in the evaluation of the usability, and user satisfaction for Ceph-X by using the SUS approach. RESULTS: Statistical analysis for the comparison between the manual and automatic cephalometric approaches showed that Ceph-X achieved a great accuracy approximately 96.6%, with an acceptable errors variation approximately less than 0.5 mm, and 1°. Results showed that Ceph-X increased the specialist performance, and minimized the processing time to obtain cephalometric measurements of human skull. Furthermore, SUS analysis approach showed that Ceph-X has an excellent usability user's feedback. CONCLUSIONS: The Ceph-X has proved its reliability, performance, and usability to be used by orthodontists for the analysis, diagnosis, and treatment of cephalometric.


Assuntos
Cefalometria/métodos , Processamento de Imagem Assistida por Computador/métodos , Ortodontia/métodos , Radiografia Dentária Digital/métodos , Adulto , Ossos Faciais/diagnóstico por imagem , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Filme para Raios X , Adulto Jovem
11.
BMC Bioinformatics ; 13 Suppl 17: S25, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23282059

RESUMO

BACKGROUND: Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap. RESULTS: The development of the automated freshwater algae detection system involved image preprocessing, segmentation, feature extraction and classification by using Artificial neural networks (ANN). Image preprocessing was used to improve contrast and remove noise. Image segmentation using canny edge detection algorithm was then carried out on binary image to detect the algae and its boundaries. Feature extraction process was applied to extract specific feature parameters from algae image to obtain some shape and texture features of selected algae such as shape, area, perimeter, minor and major axes, and finally Fourier spectrum with principal component analysis (PCA) was applied to extract some of algae feature texture. Artificial neural network (ANN) is used to classify algae images based on the extracted features. Feed-forward multilayer perceptron network was initialized with back propagation error algorithm, and trained with extracted database features of algae image samples. System's accuracy rate was obtained by comparing the results between the manual and automated classifying methods. The developed system was able to identify 93 images of selected freshwater algae genera from a total of 100 tested images which yielded accuracy rate of 93%. CONCLUSIONS: This study demonstrated application of automated algae recognition of five genera of freshwater algae. The result indicated that MLP is sufficient, and can be used for classification of freshwater algae. However for future studies, application of support vector machine (SVM) and radial basis function (RBF) should be considered for better classifying as the number of algae species studied increases.


Assuntos
Chrysophyta/classificação , Chrysophyta/citologia , Cianobactérias/classificação , Cianobactérias/citologia , Diatomáceas/classificação , Diatomáceas/citologia , Monitoramento Ambiental/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Água Doce , Análise de Componente Principal , Máquina de Vetores de Suporte
12.
BMC Bioinformatics ; 12 Suppl 13: S12, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22372859

RESUMO

BACKGROUND: This study assesses four predictive ecological models; Fuzzy Logic (FL), Recurrent Artificial Neural Network (RANN), Hybrid Evolutionary Algorithm (HEA) and multiple linear regressions (MLR) to forecast chlorophyll- a concentration using limnological data from 2001 through 2004 of unstratified shallow, oligotrophic to mesotrophic tropical Putrajaya Lake (Malaysia). Performances of the models are assessed using Root Mean Square Error (RMSE), correlation coefficient (r), and Area under the Receiving Operating Characteristic (ROC) curve (AUC). Chlorophyll-a have been used to estimate algal biomass in aquatic ecosystem as it is common in most algae. Algal biomass indicates of the trophic status of a water body. Chlorophyll- a therefore, is an effective indicator for monitoring eutrophication which is a common problem of lakes and reservoirs all over the world. Assessments of these predictive models are necessary towards developing a reliable algorithm to estimate chlorophyll- a concentration for eutrophication management of tropical lakes. RESULTS: Same data set was used for models development and the data was divided into two sets; training and testing to avoid biasness in results. FL and RANN models were developed using parameters selected through sensitivity analysis. The selected variables were water temperature, pH, dissolved oxygen, ammonia nitrogen, nitrate nitrogen and Secchi depth. Dissolved oxygen, selected through stepwise procedure, was used to develop the MLR model. HEA model used parameters selected using genetic algorithm (GA). The selected parameters were pH, Secchi depth, dissolved oxygen and nitrate nitrogen. RMSE, r, and AUC values for MLR model were (4.60, 0.5, and 0.76), FL model were (4.49, 0.6, and 0.84), RANN model were (4.28, 0.7, and 0.79) and HEA model were (4.27, 0.7, and 0.82) respectively. Performance inconsistencies between four models in terms of performance criteria in this study resulted from the methodology used in measuring the performance. RMSE is based on the level of error of prediction whereas AUC is based on binary classification task. CONCLUSIONS: Overall, HEA produced the best performance in terms of RMSE, r, and AUC values. This was followed by FL, RANN, and MLR.


Assuntos
Clorofila/análise , Eutrofização , Modelos Lineares , Modelos Biológicos , Redes Neurais de Computação , Ecossistema , Lagos/microbiologia , Malásia , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...