RESUMO
Metastatic melanoma is a deadly disease that claims thousands of lives each year despite the introduction of several immunotherapeutic agents into the clinic over the past decade, inspiring the development of novel therapeutics and the exploration of combination therapies. Our investigations target melanin pigment with melanin-specific radiolabeled antibodies as a strategy to treat metastatic melanoma. In this study, a theranostic approach was applied by first labeling a chimeric antibody targeting melanin, c8C3, with the SPECT radionuclide 203Pb for microSPECT/CT imaging of C57Bl6 mice bearing B16-F10 melanoma tumors. Imaging was followed by radioimmunotherapy (RIT), whereby the c8C3 antibody is radiolabeled with a 212Pb/212Bi "in vivo generator", which emits cytotoxic alpha particles. Using microSPECT/CT, we collected sequential images of B16-F10 murine tumors to investigate antibody biodistribution. Treatment with the 212Pb/212Bi-labeled c8C3 antibody demonstrated a dose-response in tumor growth rate in the 5-10 µCi dose range when compared to the untreated and radiolabeled control antibody and a significant prolongation in survival. No hematologic or systemic toxicity of the treatment was observed. However, administration of higher doses resulted in a biphasic tumor dose response, with the efficacy of treatment decreasing when the administered doses exceeded 10 µCi. These results underline the need for more pre-clinical investigation of targeting melanin with 212Pb-labeled antibodies before the clinical utility of such an approach can be assessed.
RESUMO
Novel therapeutic approaches are much needed for the treatment of osteosarcoma. Targeted radionuclide therapy (TRT) and radioimmunotherapy (RIT) are promising approaches that deliver therapeutic radiation precisely to the tumor site. We have previously developed a fully human antibody, named IF3, that binds to insulin-like growth factor 2 receptor (IGF2R). IF3 was used in TRT to effectively inhibit tumor growth in osteosarcoma preclinical models. However, IF3's relatively short half-life in mice raised the need for improvement. We generated an Fc-engineered version of IF3, termed IF3δ, with amino acid substitutions known to enhance antibody half-life in human serum. In this study, we confirmed the specific binding of IF3δ to IGF2R with nanomolar affinity, similar to wild-type IF3. Additionally, IF3δ demonstrated binding to human and mouse neonatal Fc receptors (FcRn), indicating the potential for FcRn-mediated endocytosis and recycling. Biodistribution studies in mice showed a higher accumulation of IF3δ in the spleen and bone than wild-type IF3, likely attributed to abnormal spleen expression of IGF2R in mice. Therefore, the pharmacokinetics data from mouse xenograft models may not precisely reflect their behavior in canine and human patients. However, the findings suggest both IF3 and IF3δ as promising options for the RIT of osteosarcoma.
Assuntos
Osteossarcoma , Somatomedinas , Humanos , Camundongos , Animais , Cães , Imunoglobulina G , Distribuição Tecidual , Fragmentos Fc das Imunoglobulinas/genética , Antígenos de Histocompatibilidade Classe I , Osteossarcoma/tratamento farmacológico , Somatomedinas/metabolismo , Meia-VidaRESUMO
Invasive fungal infections (IFIs) such as mucormycosis are causing devastating morbidity and mortality in immunocompromised patients as anti-fungal agents do not work in the setting of a suppressed immune system. The coronavirus disease 2019 (COVID-19) pandemic has created a novel landscape for IFIs in post-pandemic patients, resulting from severe immune suppression caused by COVID-19 infection, comorbidities (diabetes, obesity) and immunosuppressive treatments such as steroids. The antigen-antibody interaction has been employed in radioimmunotherapy (RIT) to deliver lethal doses of ionizing radiation emitted by radionuclides to targeted cells and has demonstrated efficacy in several cancers. One of the advantages of RIT is its independence of the immune status of a host, which is crucial for immunosuppressed post-COVID-19 patients. In the present work we targeted the fungal pan-antigens 1,3-beta-glucan and melanin pigment, which are present in the majority of pathogenic fungi, with RIT, thus making such targeting pathogen-agnostic. We demonstrated in experimental murine mucormycosis in immunocompetent and immunocompromised mice that lutetium-177 (177Lu)-labelled antibodies to these two antigens effectively decreased the fungal burden in major organs, including the brain. These results are encouraging because they show the effectiveness of pathogen-agnostic RIT in significantly decreasing fungal burden in vivo, while they can also potentially be applied to treat the broad range of invasive fungal infections that express the pan-antigens 1,3-beta-glucan or melanin.
RESUMO
Nearly 100,000 individuals are expected to be diagnosed with melanoma in the United States in 2022. Treatment options for late-stage metastatic disease up until the 2010s were few and offered only slight improvement to the overall survival. The introduction of B-RAF inhibitors and anti-CTLA4 and anti-PD-1/PD-L1 immunotherapies into standard of care brought measurable increases in the overall survival across all stages of melanoma. Despite the improvement in the survival statistics, patients treated with targeted therapies and immunotherapies are subject to very serious side effects, the development of drug resistance, and the high costs of treatment. This leaves room for the development of novel approaches as well as for the exploration of novel combination therapies for the treatment of metastatic melanoma. One such approach is targeting melanin pigment with radionuclide therapy. Advances in melanin-targeting radionuclide therapy of melanoma can be viewed from two spheres: (1) radioimmunotherapy (RIT) and (2) radiolabeled small molecules. The investigation of mechanisms of the action and efficacy of targeting melanin in melanoma treatment by RIT points to the involvement of the immune system such as complement dependent cytotoxicity. The combination of RIT with immunotherapy presents synergistic killing in mouse melanoma models. The field of radiolabeled small molecules is focused on radioiodinated compounds that have the ability to cross the cellular membranes to access intracellular melanin and can be applied in both therapy and imaging as theranostics. Clinical applications of targeting melanin with radionuclide therapies have produced encouraging results and clinical work is on-going. Continued work on targeting melanin with radionuclide therapy as a monotherapy, or possibly in combination with standard of care agents, has the potential to strengthen the current treatment options for melanoma patients.
Assuntos
Melaninas , Melanoma , Animais , Imunoterapia , Melanoma/radioterapia , Camundongos , Radioimunoterapia/métodos , Radioisótopos/uso terapêuticoRESUMO
The field of radiation countermeasures is growing, however, currently there are no effective and non-toxic compounds which could be administered orally to the individuals post exposure to high doses of ionising radiation. The pigment melanin is ubiquitous through all kingdoms of life and provides selective advantage under radiation stress through its role as a chemical and physical shield, and its capacity to respond and react to exposures. Soluble allomelanin was administered to mice following whole-body exposure to lethal or sublethal doses of gamma radiation to determine its capacity to mitigate the effects of acute radiation syndrome, and its utility as a radiation countermeasure. Allomelanin has shown a trend to improve survival post an 8 Gy sublethal radiation exposure when administered up to 48 h post-irradiation. Furthermore, it improved median and overall survival to a 10 Gy lethal radiation exposure, specifically when administered at 24 h post-irradiation. Histological analysis on the jejunum region of the small intestine of this treatment group indicated that alterations of the mucosal and submucosal architecture, and disruption of the lymphatic system associated with lethal radiation exposure were mitigated when allomelanin was administered at 24 h post-irradiation. Based on this work soluble allomelanin derived from a fungal source could serve as an easily sourced, cost-effective, and viable countermeasure to accidental radiation exposure and merits further investigation.
Assuntos
Síndrome Aguda da Radiação , Melaninas , Animais , Raios gama , Camundongos , Doses de Radiação , Irradiação Corporal Total/efeitos adversosRESUMO
Radiation damage is associated with inflammation and immunity in the intestinal mucosa, including gut microbiota. Melanin has a unique capacity to coordinate a biological reaction in response to environmental stimuli, such as radiation exposure. Thus, melanin and melanized microbes have potential to be used for mitigation of injury induced by radiation. The purpose of the current study is to examine the safety of these agents for future targeting gut microbiome to prevent radiation-induced injury. We administered mice with soluble allomelanin and observed its effect on the intestinal physiology and body weight. We then established a melanized bacterial strain in probiotic E. coli Nissle. We measured the body weight of the mice treated with melanized E. coli Nissle. We showed the enhanced bacterial abundance and colonization of the melanized bacteria E. coli Nissle in the intestine. Melanized E. coli Nissle colonized the colon in less than 3 h and showed consistent colonization over 24 h post one oral gavage. We did not find significant changes of bodyweight in the mice treated with melanized bacteria. We did not observe any inflammation in the intestine. These results demonstrate the safety of soluble melanin and melanin-producing bacteria and will support the future studies to treat radiation-induced injuries and restore dysbiosis.
RESUMO
Melanized fungi have been isolated from some of the harshest radioactive environments, and their ability to thrive in these locations is in part due to the pigment melanin. Melanin imparts a selective advantage to fungi by providing a physical shield, a chemical shield, and possibly a signaling mechanism. In previous work we demonstrated that protracted exposure of the melanized yeast Exophiala dermatitidis to mixed alpha-, beta-, and gamma-emitting radiation resulted in an adapted strain able to mount a unique response to ionizing radiation in the environment in a melanin-dependent fashion. By exploring the genome and transcriptome of this adapted melanized strain relative to a non-irradiated control we determined the altered response was transcriptomic in nature, as whole genome sequencing revealed limited variation. Transcriptomic analysis indicated that of the adapted isolates analyzed, two lineages existed: one like the naïve, non-adapted strain, and one with a unique transcriptomic signature that exhibited downregulation of metabolic processes, and upregulation of translation-associated genes. Analysis of differential gene expression in the adapted strain showed an overlap in response between the control conditions and reactive oxygen species conditions, whereas exposure to an alpha particle source resulted in a robust downregulation of metabolic processes and upregulation of DNA replication and repair genes, and RNA metabolic processes. This suggest previous exposure to radiation primes the fungus to respond to subsequent exposures in a unique way. By exploring this unique response, we have expanded our knowledge of how melanized fungi interact with and respond to ionizing radiation in their environment.
RESUMO
Melanoma incidence continues to rise, and while therapeutic approaches for early stage cases are effective, metastatic melanoma continues to be associated with high mortality. Immune checkpoint blockade (ICB) has demonstrated clinical success with approved drugs in cohorts of patients with metastatic melanoma and targeted radionuclide therapy strategies showed promise in several clinical trials against various cancers including metastatic melanoma. This led our group to investigate the combination of these two treatments which could be potentially offered to patients with metastatic melanoma not responsive to ICB alone. Previously, we have demonstrated that a combination of humanized anti-melanin antibody conjugated to 213Bismuth and anti-PD-1 ICB reduced tumor growth and increased survival in the Cloudman S91 murine melanoma DBA/2 mouse model. In the current study, we sought to improve the tumoricidal effect by using the long-lived radionuclides 177Lutetium and 225Actinium. Male Cloudman S91-bearing DBA/2 mice were treated intraperitoneally with PBS (Sham), unlabeled antibody to melanin, anti-PD-1 ICB, 177Lutetium or 225Actinium RIT, or a combination of ICB and RIT. Treatment with anti-PD-1 alone or low-dose 177Lutetium RIT alone resulted in modest tumor reduction, while their combination significantly reduced tumor growth and increased survival, suggesting synergy. 225Actinium RIT, alone or in combination with ICB, showed no therapeutic benefit, suggesting that the two radionuclides with different energetic properties work in distinct ways. We did not detect an increase in tumor-infiltrating T cells in the tumor microenvironment, which suggests the involvement of alternative mechanisms that improve the effect of combination therapy beyond that observed in the single therapies.
Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Imunoconjugados/farmacologia , Imunoterapia/métodos , Melaninas/antagonistas & inibidores , Melanoma Experimental/terapia , Radioimunoterapia/métodos , Animais , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Imunoconjugados/imunologia , Masculino , Melaninas/imunologia , Melaninas/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos DBA , Análise de Sobrevida , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologiaRESUMO
Background: With the limited options available for therapy to treat invasive fungal infections (IFI), radioimmunotherapy (RIT) can potentially offer an effective alternative treatment. Microorganism-specific monoclonal antibodies have shown promising results in the experimental treatment of fungal, bacterial, and viral infections, including our recent and encouraging results from treating mice infected with Blastomyces dermatitidis with 213Bi-labeled antibody 400-2 to (1â3)-ß-glucan. In this work, we performed a safety study of 213Bi-400-2 antibody in healthy dogs as a prelude for a clinical trial in companion dogs with acquired invasive fungal infections and later on in human patients with IFI. Methods: Three female beagle dogs (≈6.1 kg body weight) were treated intravenously with 155.3, 142.5, or 133.2 MBq of 213Bi-400-2 given as three subfractions over an 8 h period. RBC, WBC, platelet, and blood serum biochemistry parameters were measured periodically for 6 months post injection. Results: No significant acute or long-term side effects were observed after RIT injections; only a few parameters were mildly and transiently outside reference change value limits, and a transient atypical morphology was observed in the circulating lymphocyte population of two dogs. Conclusions: These results demonstrate the safety of systemic 213Bi-400-2 administration in dogs and provide encouragement to pursue evaluation of RIT of IFI in companion dogs.
Assuntos
Partículas alfa , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/química , Bismuto/química , Infecções Fúngicas Invasivas/terapia , Radioimunoterapia/efeitos adversos , Radioisótopos/química , Segurança , Animais , Anticorpos Monoclonais/uso terapêutico , Blastomyces/imunologia , Blastomyces/fisiologia , Cães , Infecções Fúngicas Invasivas/imunologia , CamundongosRESUMO
Black fungi withstand extreme stresses partly due to the presence of melanin. Melanin is associated with structural integrity and resistance to chemical and radiation stress. This results in improved health and fitness, specifically in extreme conditions. Our goal was to exploit the radiation sensing nature of melanized fungus in order to develop a radioadapted strain capable of responding to radiation in the environment. The protracted exposure of a melanized fungus, Wangiella dermatitidis, to a mixed source of radiation altered the electron transport properties. There was no effect in an albino mutant wdpsk1. We then tested the growth response to radiation in the environment, with shielding from direct exposure to the radiation. Gamma radiation caused increased colony growth irrespective of exposure history in melanized fungus. Beta particles produced growth inhibition. The previously exposed melanized strain demonstrated colony growth in response to alpha particles in the environment. Alpha particles have a higher linear energy transfer, which produces more reactive oxygen species. Our previously exposed melanized strain was resistant to the toxic effects of H2O2, while the naïve and non-melanized strains were sensitive. We propose that previous radiation exposure introduces adaptations that equip melanized fungi to tolerate, sense, and respond to radiation byproducts.
Assuntos
Meio Ambiente , Exophiala , Melaninas , Radiação Ionizante , Partículas alfa , Partículas beta , Exophiala/genética , Exophiala/crescimento & desenvolvimento , Exophiala/efeitos da radiação , Raios gama , Melaninas/metabolismo , MutaçãoRESUMO
Daratumumab is an anti-CD38 directed monoclonal antibody approved for the treatment of multiple myeloma (MM) and functions primarily via Fc-mediated effector mechanisms such as complement-dependent cytotoxicity (CDC), antibody-dependent cell cytotoxicity (ADCC), antibody-dependent cellular phagocytosis, and T-cell activation. However, not all patients respond to daratumumab therapy and management of MM remains challenging. Radioimmunotherapy with alpha particle-emitting radionuclides represents a promising approach to significantly enhance the potency of therapeutic antibodies in cancer treatment. Here we report the results of mechanistic and feasibility studies using daratumumab radiolabeled with an alpha-emitter 225Actinium for therapy of MM. CD38-positivelymphoma Daudi cell line and MM cell lines KMS-28BM and KMS-28PE were treated in vitro with 225Ac-daratumumab. 225Ac-daratumumab Fc-functional properties were assessed with C1q binding and ADCC assays. The pharmacokinetics and tumor uptake of 111In-daratumumab in Daudi tumor-bearing severe combined immunodeficiency (SCID) mice were measured with microSPECT/CT. The therapeutic effects of 225Ac-daratumumab on Daudi and KSM28BM tumors in mice and treatment side effects were evaluated for 50 days posttreatment. The safety of 225Ac-labeled antimurine CD38 mAb in immunocompetent mice was also evaluated. 225Ac-daratumumab efficiently and specifically killed CD38-positive tumor cells in vitro, while its complement binding and ADCC functions remained unaltered. MicroSPECT/CT imaging demonstrated fast clearance of the radiolabeled daratumumab from the circulation and tissues, but prolonged retention in the tumor up to 10 days. Therapy and safety experiments with 225Ac-daratumumab showed a significant increase in the antitumor potency in comparison to naked antibody without any significant side effects. Our results highlight the potential of targeting alpha-emitters to tumors as a therapeutic approach and suggest that 225Ac-daratumumab may be a promising therapeutic strategy for the treatment of hematologic malignancies.
RESUMO
Osteosarcoma (OS) represents 3.4% of all childhood cancers with overall survival of 70% not improving in 30 years. The consistent surface overexpression of insulin-like growth factor-2 receptor (IGF2R) has been reported in commercial and patient-derived xenograft (PDX) OS cell lines. We aimed to assess efficacy and safety of treating PDX and commercial OS tumors in mice with radiolabeled antibody to IGF2R and to investigate IGF2R expression on canine OS tumors. IGF2R expression on human commercial lines 143B and SaOS2 and PDX lines OS-17, OS-33 and OS-31 was evaluated by FACS. The biodistribution and microSPECT/CT imaging with 111Indium-2G11 mAb was performed in 143B and OS-17 tumor-bearing SCID mice and followed by radioimmunotherapy (RIT) with 177Lutetium-2G11 and safety evaluation. IGF2R expression in randomly selected canine OS tumors was measured by immunohistochemistry. All OS cell lines expressed IGF2R. Biodistribution and microSPECT/CT revealed selective uptake of 2G11 mAb in 143B and OS-17 xenografts. RIT significantly slowed down the growth of OS-17 and 143B tumors without local and systemic toxicity. Canine OS tumors expressed IGF2R. This study demonstrates the feasibility of targeting IGF2R on OS in PDX and spontaneous canine tumors and sets the stage for further development of RIT of OS using comparative oncology.
Assuntos
Doenças do Cão/terapia , Imunoconjugados/administração & dosagem , Osteossarcoma/terapia , Radioimunoterapia/métodos , Receptor IGF Tipo 2/metabolismo , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/patologia , Cães , Estudos de Viabilidade , Feminino , Humanos , Camundongos , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Receptor IGF Tipo 2/antagonistas & inibidores , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Microtomografia por Raio-X , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Melanoma is a cancer with increasing incidence and there is a need for alternatives to immunotherapy within effective approaches to treatment of metastatic melanoma. We performed comparative radioimmunotherapy (RIT) of experimental B16-F10 melanoma with novel humanized IgG to melanin h8C3 labeled with a beta emitter, 177Lu, and an alpha-emitter, 213Bi, as well as biodistribution, microSPECT/CT imaging, and mouse and human dosimetry calculations. microSPECT/CT imaging showed that a humanized antibody that targets "free" melanin in the tumor microenvironment had high tumor uptake in B16F10 murine melanoma in C57Bl/6 mice, with little to no uptake in naturally melanized tissues. Extrapolation of the mouse dosimetry data to an adult human demonstrated that doses delivered to major organs and the whole body by 177Lu-h8C3 would be approximately two times higher than those delivered by 213Bi-h8C3, while the doses to the tumor would be almost similar. RIT results indicated that 213Bi-h8C3 was more effective in slowing down the tumor growth than 177Lu-h8C3, while both radiolabeled antibodies did not produce significant hematologic or systemic side effects. We concluded that h8C3 antibody labeled with 213Bi is a promising reagent for translation into a clinical trial in patients with metastatic melanoma.
RESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) accounts for >90% of pancreatic malignancies, and has median survival of <6 months. There is an urgent need for diagnostic and therapeutic options for PDAC. Centrin1 (CETN1) is a novel member of Cancer/Testis Antigens, with a 25-fold increase of CETN1 gene expression in PDX from PDAC patients. The absence of selective anti-CETN1 antibodies is hampering CETN1 use for diagnosis and therapy. Here we report the generation of highly specific for CETN1 antibodies and their evaluation for radioimmunoimaging and radioimmunotherapy (RIT) of experimental PDAC. METHODS: The antibodies to CETN1 were generated via mice immunization with immunogenic peptide distinguishing CETN1 from CETN2. Patient tumor microarrays were used to evaluate the binding of the immune serum to PDAC versus normal pancreas. The antibodies were tested for their preferential binding to CETN1 over CETN2 by ELISA. Mice bearing PDAC MiaPaCa2 xenografts were imaged with microSPECT/CT and treated with 213 Bi- and 177 Lu-labeled antibodies to CETN1. RESULTS: Immune serum bind to 50% PDAC cases on patient tumor microarrays with no specific binding to normal pancreas. Antibodies demonstrated preferential binding to CETN1 versus CETN2. Antibody 69-11 localized to PDAC xenografts in mice in vivo and ex vivo. RIT of PDAC xenografts with 213 Bi-labeled antibodies was effective, safe, and CETN1-specific. CONCLUSIONS: The results demonstrate the ability of these novel antibodies to detect CETN1 both in vitro and in vivo; as well, the RIT treatment of experimental PDAC when radiolabeled with 213 Bi is highly efficient and safe. Further evaluation of these novel reagents for diagnosis and treatment of PDAC is warranted.
Assuntos
Anticorpos , Antígenos de Neoplasias , Proteínas de Membrana , Imagem Molecular , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Radioimunodetecção , Radioimunoterapia , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Imagem Molecular/métodos , Neoplasias Pancreáticas/etiologia , Radioimunodetecção/métodos , Radioimunoterapia/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
(1) Background: Monoclonal antibodies are used in the treatment of multiple conditions including cancer, autoimmune disorders, and infectious diseases. One of the initial steps in the selection of an antibody candidate for further pre-clinical development is determining its pharmacokinetics in small animal models. The use of mass spectrometry and other techniques to determine the fate of these antibodies is laborious and expensive. Here we describe a straightforward and highly reproducible methodology for utilizing radiolabeled antibodies for pharmacokinetics studies. (2) Methods: Commercially available bifunctional linker CHXA" and 111Indium radionuclide were used. A melanin-specific chimeric antibody A1 and an isotype matching irrelevant control A2 were conjugated with the CHXA", and then radiolabeled with 111In. The biodistribution was performed at 4 and 24 h time points in melanoma tumor-bearing and healthy C57BL/6 female mice. (3) The biodistribution of the melanin-binding antibody showed the significant uptake in the tumor, which increased with time, and very low uptake in healthy melanin-containing tissues such as the retina of the eye and melanized skin. This biodistribution pattern in healthy tissues was very close to that of the isotype matching control antibody. (4) Conclusions: The biodistribution experiment allows us to assess the pharmacokinetics of both antibodies side by side and to make a conclusion regarding the suitability of specific antibodies for further development.
RESUMO
Radioimmunotherapy offers an effective way to direct ionizing radiation to cancer cells through attachment of radionuclides to antibodies while limiting negative effects of off-target irradiation. This, however, requires effective facile methods for attachment of therapeutic radionuclides onto antibodies. Herein, the authors report their efforts in evaluating N-succinimidyl S-acetylthioacetate (SATA), a commercially available reagent, for use as a bifunctional chelating agent (BCA) to attach 188Rhenium (188Re) onto h8C3, a humanized IgG antibody that can effectively target extracellular melanin present in malignant melanoma. Micro single photon emission computer tomography/computer tomography was used to determine an effective timeline for antibody uptake in B16-F10 tumor bearing C57BL6 mice guiding the selection of 188Re with its 16.9 h physical half-life. Radio instant thin layer chromatography coupled with radio high-performance liquid chromatography was used to assess radioisotope incorporation, as well as stability during the labeling process for SATA conjugated h8C3. It was determined that despite the relatively mild conditions used, incorporation of the SATA conjugate resulted in antibody instability during labeling requiring a different BCA to facilitate rhenium incorporation onto the antibodies.
Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais/química , Radioisótopos/química , Rênio/química , Succinimidas/química , Sulfetos/química , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Quelantes/química , Feminino , Humanos , Ligantes , Melanoma/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Radioimunoterapia/métodos , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/química , Rênio/uso terapêuticoRESUMO
There is a need for novel and effective prophylactic treatments and radioprotective materials to protect civilians and military personnel from ionizing radiation in contaminated environments. Melanin, a naturally occurring, ubiquitous pigment, has been shown to confer radioresistance, acting as a potential radioprotective agent. We have demonstrated that melanized Cryptococcus neoformans (CN) cells had improved survival post ionizing irradiation than non-melanized ones. The goal of this study was to identify morphological changes in melanized and non-melanized CN cells following irradiation with densely-ionizing deuterons and alpha particles relative to sparsely-ionizing gamma radiation. We observed significant differences between the melanized and non-melanized CN cellular ultrastructure following irradiation. Melanized CN cells were relatively resistant to mid and max-dose levels of alpha particles and deuterons irradiation. Following irradiation the capsule was stripped, but the cell wall was intact and structural integrity was maintained. At the maximum dose, cytoplasmic vacuolization, and mitochondrial swelling started to occur. In contrast, the non-melanized CN strain was sensitive to the mid-dose radiation. Non-melanized cells presented two morphologies: small condensed, and swollen, lacking structural integrity. This morphological investigation provides the first direct evidence of the radioprotective properties of melanin in CN cells subjected to high RBE and high LET ionizing radiation.
Assuntos
Cryptococcus neoformans/efeitos da radiação , Cryptococcus neoformans/ultraestrutura , Melaninas/fisiologia , Tolerância a Radiação , Protetores contra Radiação , Partículas alfa/efeitos adversos , Parede Celular/efeitos da radiação , Deutério/efeitos adversos , Raios gama/efeitos adversos , Microscopia Eletrônica de Transmissão , Proteção RadiológicaRESUMO
The Saccharomyces cerevisiae Forkhead Box (Fox) orthologs, Forkheads (Fkh) 1 and 2, are conserved transcription factors required for stress response, cell cycle progression and longevity. These yeast proteins play a key role in mitotic progression through activation of the ubiquitin E3 ligase Anaphase Promoting Complex (APC) via transcriptional control. Here, we used genetic and molecular analyses to demonstrate that the APC E3 activity is necessary for mitotic Fkh1 protein degradation and subsequent cell cycle progression. We report that Fkh1 protein degradation occurs specifically during mitosis, requires APCCdc20 and proteasome activity, and that a stable Fkh1 mutant reduces normal chronological lifespan, increases genomic instability, and increases sensitivity to stress. Our data supports a model whereby cell cycle progression through mitosis and G1 requires the targeted degradation of Fkh1 by the APC. This is significant to many fields as these results impact our understanding of the mechanisms underpinning the control of aging and cancer.
Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Genoma , Longevidade/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Ciclo Celular/fisiologia , Saccharomyces cerevisiaeRESUMO
Genomic stability, stress response, and nutrient signaling all play critical, evolutionarily conserved roles in lifespan determination. However, the molecular mechanisms coordinating these processes with longevity remain unresolved. Here we investigate the involvement of the yeast anaphase promoting complex (APC) in longevity. The APC governs passage through M and G1 via ubiquitin-dependent targeting of substrate proteins and is associated with cancer and premature aging when defective. Our two-hybrid screen utilizing Apc5 as bait recovered the lifespan determinant Fob1 as prey. Fob1 is unstable specifically in G1, cycles throughout the cell cycle in a manner similar to Clb2 (an APC target), and is stabilized in APC (apc5(CA)) and proteasome (rpn10) mutants. Deletion of FOB1 increased replicative lifespan (RLS) in wild type (WT), apc5(CA), and apc10 cells, and suppressed apc5(CA) cell cycle progression and rDNA recombination defects. Alternatively, increased FOB1 expression decreased RLS in WT cells, but did not reduce the already short apc5(CA) RLS, suggesting an epistatic interaction between apc5(CA) and fob1. Mutation to a putative L-Box (Fob1(E420V)), a Destruction Box-like motif, abolished Fob1 modifications, stabilized the protein, and increased rDNA recombination. Our work provides a mechanistic role played by the APC to promote replicative longevity and genomic stability in yeast.
Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , DNA Fúngico/metabolismo , DNA Ribossômico/metabolismo , Proteínas Fúngicas/metabolismo , Leveduras/crescimento & desenvolvimento , Ciclossomo-Complexo Promotor de Anáfase/genética , Sítios de Ligação , Ciclo Celular , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Instabilidade Genômica , Mutação , Técnicas do Sistema de Duplo-Híbrido , Leveduras/metabolismoRESUMO
Forkhead box O (FOXO) transcription factors have a conserved function in regulating metazoan lifespan. A key function in this process involves the regulation of the cell cycle and stress responses including free radical scavenging. We employed yeast chronological and replicative lifespan assays, as well as oxidative stress assays, to explore the potential evolutionary conservation of function between the FOXOs and the yeast forkhead box transcription factors FKH1 and FKH2. We report that the deletion of both FKH genes impedes normal lifespan and stress resistance, particularly in stationary phase cells, which are non-responsive to caloric restriction. Conversely, increased expression of the FKHs leads to extended lifespan and improved stress response. Here we show the Anaphase-Promoting Complex (APC) genetically interacts with the Fkh pathway, likely working in a linear pathway under normal conditions, as fkh1Δ fkh2Δ post-mitotic survival is epistatic to that observed in apc5(CA) mutants. However, under stress conditions, post-mitotic survival is dramatically impaired in apc5(CA) fkh1Δ fkh2Δ, while increased expression of either FKH rescues APC mutant growth defects. This study establishes the FKHs role as evolutionarily conserved regulators of lifespan in yeast and identifies the APC as a novel component of this mechanism under certain conditions, likely through combined regulation of stress response, genomic stability, and cell cycle regulation.