Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273116

RESUMO

The removal of pollutants, including heavy metals, from the aquatic environment is an urgent problem worldwide. Actively developing nanotechnology areas is becoming increasingly important for solving problems in the field of the remediation of aquatic ecosystems. In particular, methods for removing pollutants using nanoparticles (NPs) are proposed, which raises the question of the effect of a combination of NPs and heavy metals on living organisms. In this work, we investigated the role of CuO-NPs in changing the toxicity of Cd and Pb salts, as well as the bioaccumulation of these elements in a culture of the microalga Desmodesmus communis. It was found that CuO-NPs at concentrations of 10, 100, and 1000 µg L-1 had no effect on the viability of microalgae cells. On the 14th day of the experiment, Cd at a concentration of 1 mg L-1 reduced the viability index by 30% and, when combined with CuO-NPs, by 25%, i.e., CuO-NPs slightly reduced the toxic effect of Cd. At the same time, in this experiment, when CuO-NPs and Cd were used together, the level of oxidative stress increased, including on the first day in mixtures with 1 mg L-1 Cd. Under the influence of Pb, the cell viability index decreased by 70% by the end of the experiment, regardless of the metal concentration. The presence of CuO-NPs slightly reduced the toxicity of Pb in terms of viability and reactive oxygen species (ROS). At the same time, unlike Cd, Pb without NPs caused ROS production on the first day, whereas the addition of CuO-NPs completely detoxified Pb at the beginning and had a dose-dependent effect on mixtures at the end of the experiment. Also, the introduction of CuO-NPs slightly reduced the negative effect of Pb on pigment synthesis. As a molecular mechanism of the observed effects, we prioritized the provocation of oxidative stress by nanoparticles and related gene expression and biochemical reactions of algae cells. Analysis of the effect of CuO-NPs on the Cd and Pb content in microalgae cells showed increased accumulation of heavy metals. Thus, when algae were cultured in an environment with Cd and CuO-NPs, the Cd content per cell increased 4.2 times compared to the variant where cells were cultured only with Cd. In the case of Pb, the increase in its content per one cell increased 6.2 times when microalgae were cultured in an environment containing CuO-NPs. Thus, we found that CuO-NPs reduce the toxic effects of Cd and Pb, as well as significantly enhance the bioaccumulation of these toxic elements in the cells of D. communis microalgae. The results obtained can form the basis of technology for the nanobioremediation of aquatic ecosystems from heavy metals using microalgae.


Assuntos
Cádmio , Cobre , Chumbo , Nanopartículas Metálicas , Microalgas , Estresse Oxidativo , Chumbo/toxicidade , Chumbo/metabolismo , Cobre/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Microalgas/metabolismo , Microalgas/efeitos dos fármacos , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Bioacumulação , Poluentes Químicos da Água/toxicidade , Espécies Reativas de Oxigênio/metabolismo
2.
Plants (Basel) ; 12(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005787

RESUMO

A new diatom genus Cymbosellaphora Kulikovskiy, Glushchenko, Genkal and Kociolek gen. nov., was described with species Cymbosellaphora vietnamensis Glushchenko, Kulikovskiy and Kociolek sp. nov. C. vietnamensis sp. nov. was described from Vietnam and characterized by the presence of morphological features such as valves with naviculoid symmetry, slight dorsiventrality, the presence of tectula as pore occlusions, uniseriate striae, and a very broad mantle. Four species were transferred to the new genus. These are C. absoluta comb. nov., C. circumborealis comb. nov., C. geisslerae comb. nov., and C. laterostrata comb. nov. Previously, these species were members of genera Navicula Bory, Sellaphora Mereschkowsky, and Naviculadicta Lange-Bertalot. The taxonomic history of these species and genera are discussed. The tectulum is known only from the cymbelloid diatoms, and our new genus is placed within the Cymbellaceae. The presence of a tectulum demonstrates that these species cannot be placed in Sellaphora, as indicated in the literature. The recent proposal to transfer a large number of species with different morphologies to the genus Sellaphora is also discussed. Additionally, we compare pore occlusions with tectula between different genera of the Cymbellaceae with naviculoid symmetry.

3.
Plants (Basel) ; 11(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36501400

RESUMO

Dissolved organic matter (DOM) is an important component of aquatic environments; it plays a key role in the biogeochemical cycles of many chemical elements. Using excitation-emission matrix fluorescence spectroscopy, we examined the fluorescent fraction of DOM (FDOM) produced at the stationary phase of growth of five strains of microalgae sampled and isolated from the Ob and Yenisei gulfs. Based on the morphological and molecular descriptions, the strains were identified as diatoms (Asterionella formosa, Fragilaria cf. crotonensis, and Stephanodiscus hantzschii), green microalgae (Desmodesmus armatus), and yellow-green microalgae (Tribonema cf. minus). Three fluorescent components were validated in parallel factor analysis (PARAFAC): one of them was characterized by protein-like fluorescence (similar to peak T), two others, by humic-like fluorescence (peaks A and C). The portion of fluorescence intensity of humic compounds (peak A) to the total fluorescence intensity was the lowest (27 ± 5%) and showed little variation between species. Protein-like fluorescence was most intense (45 ± 16%), but along with humic-like fluorescence with emission maximum at 470 nm (28 ± 14%), varied considerably for different algae strains. The direct optical investigation of FDOM produced during the cultivation of the studied algae strains confirms the possibility of autochthonous production of humic-like FDOM in the Arctic shelf regions.

4.
Microorganisms ; 10(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363716

RESUMO

Red microalga Porphyridium purpureum (Bory) Drew is a well-known object of biotechnology due to its unique ability to synthesize a wide range of biologically active compounds. Enough minerals in an accessible form in a medium are a prerequisite for maintaining a high growth rate of P. purpureum. Carbon is the main element of microalgal biomass and is a component of all organic compounds. The work aimed to study the morphological features of cells and the accumulation and production of B-phycoerythrin and total protein in P. purpureum biomass in different ways of supplying CO2 into the culture. In Variant 1, CO2 was directly injected into a gas-air mixture (2-3 percent v/v) used for culture bubbling via capillary. In Variant 2, the air was supplied to the culture through the aquarium sparger. Variant 3 was like the first one but without the additional introduction of carbon dioxide. The application of the method for sparging atmospheric air led to a significant increase in both the productivity of the P. purpureum and the rate of protein and B-phycoerythrin synthesis in comparison with growing it using the air without spraying (two-and-a-half times, five times, and more than eight times, respectively). Moreover, there were significant changes in the morphological structure of P. purpureum cells, which were visualized both by microscopy and by changes in the color of the culture. Based on the experimental data obtained, the variants for the carbon supply experiment were ranked as follows: Variant 1 is better than Variant 2 and Variant 3. The use of atomization as a technological method made it possible to speed up the transfer of carbon dioxide from the air to the medium, which helped to keep the growth rate of P. purpureum biomass and B-phycoerythrin accumulation high.

5.
Plants (Basel) ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145844

RESUMO

For the first time, a giant diatom species of the genus Cymbella from Lake Baikal was studied using molecular methods. Molecular and morphological investigations allowed to us to described one new species, Cymbella baicalaspera Glushchenko, Kulikovskiy and Kociolek sp. nov. This species is both morphologically similar and phylogenetically close to a second giant Cymbella species that we investigated here, identified by us as Cymbella himalaspera Jüttner and Van de Vijver in Jüttner et al. 2010. This species was first described from Nepal on the basis of a morphological investigation. Small morphological differences exist between the type population and specimens from Lake Baikal, but otherwise the two are identical. These very interesting results show that some Baikalian diatoms can be distributed more widely and are not only endemic to this ancient lake. Similarity between Cymbella baicalaspera sp. nov. and Cymbella himalaspera on the basis of both morphological features and their close phylogenetic relationships suggested by molecular data indicate they are sister species and an example of sympatric speciation. These results also suggest an early development of a species flock. This species group warrants additional research in terms of. their diversification and biogeography.

6.
Biology (Basel) ; 10(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34681108

RESUMO

Data on the elemental composition of the diatom Chaetoceros spp. from natural phytoplankton communities of Arctic marine ecosystems are presented for the first time. Samples were collected during the 69th cruise (22 August-26 September 2017) of the R/V Akademik Mstislav Keldysh in the Kara, Laptev, and East Siberian Seas. The multi-element composition of the diatom microalgae was studied by ICP-AES and ICP-MS methods. The contents of major (Na, Mg, Al, Si, P, S, K and Ca), trace (Li, Be, B, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb, Bi, Th and U) and rare earth (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) elements varied greatly, which was probably associated with the peculiarities of the functional state and mineral nutrition of phytoplankton in the autumn period. Biogenic silicon was the dominant component of the chemical composition of Chaetoceros spp., averaging 19.10 ± 0.58% of dry weight (DW). Other significant macronutrients were alkaline (Na and K) and alkaline earth (Ca and Mg) metals as well as biogenic (S and P) and essential (Al and Fe) elements. Their total contents varied from 1.26 to 2.72% DW, averaging 2.07 ± 0.43% DW. The Al:Si ratio for natural assemblages of Chaetoceros spp. of the shelf seas of the Arctic Ocean was 5.8 × 10-3. The total concentrations of trace and rare earth elements on average were 654.42 ± 120.07 and 4.14 ± 1.37 µg g-1 DW, respectively. We summarize the scarce data on the average chemical composition of marine and oceanic phytoplankton and discuss the limitations and approaches of such studies. We conclude on the lack of data and the need for further targeted studies on this issue.

7.
PhytoKeys ; 174: 147-163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776528

RESUMO

A new monoraphid diatom species Achnanthidium tinea Tseplik, Kulikovskiy, Kociolek & Maltsev, sp. nov. is described from Indonesia. The species is described on the basis of molecular and morphological analyses. According to molecular data the new species belongs to the clade that includes strains of Achnanthidium minutissimum, Achnanthidium saprophilum and Achnanthidium digitatum. Morphologically, the new species differs quite significantly from other species of the same genus because of linear-elliptic valves with almost parallel sides and strongly radiate striae and a butterfly-shaped fascia on the raphe valve. The morphology and phylogeny of the new species are discussed, and thoughts on the current state of the taxonomy of the genus Achnanthidium are expressed. Our work shows the importance of using molecular data in diatom systematics and also demonstrates the need to investigate rarely studied regions of our planet.

8.
PhytoKeys ; 187: 129-140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35068971

RESUMO

A new monoraphid diatom species Achnanthidiumgladius sp. nov. is described from Indonesia. The description is based on molecular data (18SV4), morphological analysis and comparison with similar species. According to molecular data, Achnanthidiumgladius sp. nov. is closely related to Achnanthidiumminutissimum. Morphologically, the new species differs from similar species by the absence of a fascia on raphe valve, cell size, and striae density and pattern. The new species is only known from the type locality in Indonesia. Comparison with close related species is given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...