Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(5): 2097-2117, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38440998

RESUMO

Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.


Assuntos
Barreira Hematoencefálica , Peptídeos Penetradores de Células , Sistemas de Liberação de Medicamentos , Nanopartículas , Doenças Neurodegenerativas , Doença de Parkinson , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/administração & dosagem , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico
2.
Int J Biol Macromol ; 263(Pt 1): 130261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368978

RESUMO

αB-Crystallin (αB-Cry) is a small heat shock protein known for its protective role, with an adaptable structure that responds to environmental changes through oligomeric dynamics. Cu(II) ions are crucial for cellular processes but excessive amounts are linked to diseases like cataracts and neurodegeneration. This study investigated how optimal and detrimental Cu(II) concentrations affect αB-Cry oligomers and their chaperone activity, within the potassium-regulated ionic-strength environment. Techniques including isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy, cyclic voltammetry, dynamic light scattering, circular dichroism, and MTT assay were employed and complemented by computational methods. Results showed that potassium ions affected αB-Cry's structure, promoting Cu(II) binding at multiple sites and scavenging ability, and inhibiting ion redox reactions. Low concentrations of Cu(II), through modifications of oligomeric interfaces, induce regulation of surface charge and hydrophobicity, resulting in an increase in chaperone activity. Subunit dynamics were regulated, maintaining stable interfaces, thereby inhibiting further aggregation and allowing the functional reversion to oligomers after stress. High Cu(II) disrupted charge/hydrophobicity balance, sewing sizable oligomers together through subunit-subunit interactions, suppressing oligomer dissociation, and reducing chaperone efficiency. This study offers insights into how Cu(II) and potassium ions influence αB-Cry, advancing our understanding of Cu(II)-related diseases.


Assuntos
Cobre , Cadeia B de alfa-Cristalina , Humanos , Cobre/química , Cadeia B de alfa-Cristalina/química , Chaperonas Moleculares , Homeostase , Íons
3.
Int J Biol Macromol ; 241: 124529, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37085077

RESUMO

The use of hydrogel dressings has become increasingly popular as a scaffold for skin tissue engineering. Herein, we have developed an innovative wound dressing using chitosan, fibrinogen, nisin, and EDTA as an effective antibacterial scaffold for wound treatment. The structural and functional characteristics of the hydrogel, including morphology, mechanical strength, drug encapsulation and release, swelling behaviors, blood coagulation, cytotoxicity, and antibacterial activity, were studied. Spectroscopic studies indicated that the attachment of chitosan to fibrinogen is associated with minimal change in its secondary structure; subsequently, at higher temperatures, it is expected to preserve fibrinogen's conformational stability. Mechanical and blood coagulation analyses indicated that the incorporation of fibrinogen into the hydrogel resulted in accelerated clotting and enhanced mechanical properties. Our cell studies showed biocompatibility and non-toxicity of the hydrogel along with the promotion of cell migration. In addition, the prepared hydrogel indicated an antibacterial behavior against both Gram-positive and Gram-negative bacteria. Interestingly, the in vivo data revealed enhanced tissue regeneration and recovery within 17 days in the studied animals. Taken together, the results obtained from in vitro and histological assessments indicate that this innovatively designed hydrogel shows good potential as a candidate for wound healing.


Assuntos
Antibacterianos , Quitosana , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/farmacologia , Hidrogéis/química , Quitosana/farmacologia , Quitosana/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cicatrização , Bandagens , Coagulação Sanguínea , Fibrinogênio
4.
ACS Chem Neurosci ; 14(5): 851-863, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36750431

RESUMO

Considering the central role of oxidative stress in the onset and progress of Parkinson's diseases (PD), search for compounds with antioxidant properties has attracted a growing body of attention. Here, we compare the neuroprotective effect of bulk and nano forms of the polyphenolic fraction of propolis (PFP) against rotenone-induced cellular and animal models of PD. Mass spectrometric analysis of PFP confirmed the presence of multiple polyphenols including kaempferol, naringenin, coumaric acid, vanillic acid, and ferulic acid. In vitro cellular experiments indicate the improved efficiency of the nano form, compared to the bulk form, of PFP in attenuating rotenone-induced cytotoxicity characterized by a decrease in cell viability, release of lactate dehydrogenase, increased ROS generation, depolarization of the mitochondrial membrane, decreased antioxidant enzyme activity, and apoptosis induction. In vivo experiments revealed that while no significant neuroprotection was observed relating to the bulk form, PFP nanosheets were very effective in protecting animals, as evidenced by the improved behavioral and neurochemical parameters, including decreased lipid peroxidation, increased GSH content, and antioxidant enzyme activity enhancement. We suggest that improved neuroprotective effects of PFP nanosheets may be attributed to their increased water solubility and enrichment with oxygen-containing functional groups (such as OH and COOH), leading to increased antioxidant activity of these compounds.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Própole , Animais , Doença de Parkinson/tratamento farmacológico , Rotenona/toxicidade , Fármacos Neuroprotetores/farmacologia , Própole/farmacologia , Antioxidantes/farmacologia , Polifenóis/farmacologia , Estresse Oxidativo , Modelos Animais de Doenças
5.
Biochim Biophys Acta Proteins Proteom ; 1871(2): 140883, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455808

RESUMO

Multidrug resistance of bacteria and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, make it urgent to develop new antibiotics. Here, we evaluate the antibacterial and anti-biofilm properties of ticlopidine (TP), an anti-platelet aggregation drug, TP showed antibacterial activity against both gram-positive (MRSA) and gram-negative (E. coli, and P. aeruginosa) bacteria over a long treatment period. TP significantly reduced the survival of gram-negative bacteria in human blood though impact on gram-positives was more limited. TP may cause death in MRSA by inhibiting staphyloxanthin pigment synthesis, leading to oxidative stress, while scanning electron microscopy imaging indicate a loss of membrane integrity, damage, and consequent death due to lysis in gram-negative bacteria. TP showed good anti-biofilm activity against P. aeruginosa and MRSA, and a stronger biofilm degradation activity on P. aeruginosa compared to MRSA. Measuring fluorescence of the amyloid-reporter Thioflavin T (ThT) in biofilm implicated inhibition of amyloid formation as part of TP activity. This was confirmed by assays on the purified protein in P. aeruginosa, FapC, whose fibrillation kinetics was inhibited by TP. TP prolonged the lag phase of aggregation and reduced the subsequent growth rate and prolonging the lag phase to very long times provides ample opportunity to exert TP's antibacterial effect. We conclude that TP shows activity as an antibiotic against both gram-positive and gram-negative bacteria thanks to a broad range of activities, targeting bacterial metabolic processes, cellular structures and the biofilm matrix.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas , Biofilmes
6.
Curr Res Struct Biol ; 4: 356-364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523328

RESUMO

Protein oligomerization has two notable aspects: it is crucial for the performing cellular and molecular processes accurately, and it produces amyloid fibril precursors. Although a clear explanation for amyloidosis as a whole is lacking, most studies have emphasized the importance of protein misfolding followed by formation of cytotoxic oligomer structures, which are responsible for disorders as diverse as neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and metabolic disorders, such as type 2 diabetes. Constant surveillance by oligomeric protein structures known as molecular chaperones enables cells to overcome the challenge of misfolded proteins and their harmful assemblies. These molecular chaperones encounter proteins in cells, and benefit cell survival as long as they perform correctly. Thus, this review highlights the roles of structural aspects of chaperone protein oligomers in determining cell fate-either succumbing to amyloid oligomers or survival-as well as experimental approaches used to investigate these entities.

7.
Sci Rep ; 12(1): 11898, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831343

RESUMO

α-Synuclein (α-Syn) aggregates are key components of intracellular inclusion bodies characteristic of Parkinson's disease (PD) and other synucleinopathies. Metal ions have been considered as the important etiological factors in PD since their interactions with α-Syn alter the kinetics of fibrillation. In the present study, we have systematically explored the effects of Zn2+, Cu2+, Ca2+, and Mg2+ cations on α-Syn fibril formation. Specifically, we determined fibrillation kinetics, size, morphology, and secondary structure of the fibrils and their cytotoxic activity. While all cations accelerate fibrillation, we observed distinct effects of the different ions. For example, Zn2+ induced fibrillation by lower tlag and higher kapp and formation of shorter fibrils, while Ca2+ ions lead to formation of longer fibrils, as evidenced by dynamic light scattering and atomic force microscopy studies. Additionally, the morphology of formed fibrils was different. Circular dichroism and attenuated total reflection-Fourier transform infrared spectroscopies revealed higher contents of ß-sheets in fibrils. Interestingly, cell viability studies indicated nontoxicity of α-Syn fibrils formed in the presence of Zn2+ ions, while the fibrils formed in the presence of Cu2+, Ca2+, and Mg2+ were cytotoxic. Our results revealed that α-Syn fibrils formed in the presence of different divalent cations have distinct structural and cytotoxic features.


Assuntos
Doença de Parkinson , Sinucleinopatias , Amiloide/química , Amiloide/toxicidade , Humanos , Íons , Metais , alfa-Sinucleína/química
8.
Sci Rep ; 12(1): 7213, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508533

RESUMO

Wound healing is a complex process and rapid healing necessitates a proper micro-environment. Therefore, design and fabrication of an efficacious wound dressing is an impressive innovation in the field of wound healing. The fabricated wound dressing in this scenario was designed using a combination of the appropriate coagulating and anti-bacterial materials like fibrinogen (as coagulating agent), nisin (as anti-bacterial agent), ethylenediaminetetraacetic acid (as anti-bacterial agent), and alginate (as wound healing agent). Biophysical characterization showed that the interaction of fibrinogen and alginate was associated with minor changes in the secondary structure of the protein. Conformational studies showed that the protein was structurally stable at 42 °C, is the maximum temperature of the infected wound. The properties of the hydrogel such as swelling, mechanical resistance, nisin release, antibacterial activity, cytotoxicity, gel porosity, and blood coagulation were assessed. The results showed a slow release for the nisin during 48 h. Antibacterial studies showed an inhibitory effect on the growth of Gram-negative and Gram-positive bacteria. The hydrogel was also capable to absorb a considerable amount of water and provide oxygenation as well as incorporation of the drug into its structure due to its sufficient porosity. Scanning electron microscopy showed pore sizes of about 14-198 µm in the hydrogel. Cell viability studies indicated high biocompatibility of the hydrogel. Blood coagulation test also confirmed the effectiveness of the synthesized hydrogel in accelerating the process of blood clot formation. In vivo studies showed higher rates of wound healing, re-epithelialization, and collagen deposition. According to the findings from in vitro as well as in vivo studies, the designed hydrogel can be considered as a novel attractive wound dressing after further prerequisite assessments.


Assuntos
Hidrogéis , Nisina , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Fibrinogênio/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Nisina/farmacologia , Cicatrização
9.
Biochim Biophys Acta Biomembr ; 1864(1): 183776, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547253

RESUMO

Alpha-synuclein (α-syn) aggregation and mitochondrial dysfunction are considered as two of the main factors associated with Parkinson's disease (PD). In the present investigation, the effectiveness of the amyloid fibrils obtained from α-syn with those of hen egg white lysozyme (HEWL), as disease-related and-unrelated proteins, to damage rat brain and rat liver mitochondria have been investigated. This was extended by looking at SH-SY5Y human neuroblastoma cells and erythrocytes, thereby investigating the significance of structural characteristics of amyloid fibrils related to their interactions with biomembranes obtained from various sources. Results presented clearly demonstrate substantial differences in the response of tested biomembranes to toxicity induced by α-syn/HEWL amyloid fibrils, highlighting a structure-function relationship. We found that fibrillar aggregates of α-syn, but not HEWL, caused a significant increase in mitochondrial ROS, loss of membrane potential, and mitochondrial swelling, in a dose-dependent manner. Toxicity was found to be more pronounced in brain mitochondria, as compared to liver mitochondria. For SH-SY5Y cells and erythrocytes, however, both α-syn and HEWL amyloid fibrils showed the capacity to induce toxicity. Taken together, these results may suggest selective toxicity of α-syn amyloid fibrils to mitochondria mediated likely by their direct interaction with the outer mitochondrial membrane, indicating a correlation between specific structural characteristics of α-syn fibrils and an organelle strongly implicated in PD pathology.


Assuntos
Amiloide/química , Encéfalo/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , alfa-Sinucleína/química , Amiloide/farmacologia , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Galinhas , Clara de Ovo/química , Eritrócitos/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Muramidase/química , Muramidase/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ratos , Relação Estrutura-Atividade , alfa-Sinucleína/genética
10.
Biotechnol Appl Biochem ; 69(6): 2496-2506, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894353

RESUMO

Targeted drug therapy against cancer has been introduced as a smart strategy to combat the unwanted side effects due to systemic administration of chemotherapeutics. A human serum albumin (HSA)-based nanocarrier was fabricated with the aim to target reductive media and acidic pH of the tumor tissues. α-Lipoic acid (LA) was applied to increase the number of disulfide bonds in the nanocarrier to target higher glutathione concentrations present in tumor tissues and polyethylene glycol was used to target the acidic pH of tumors. UV illumination, ethanol desolvation, oxygen bubbling, and a mixture of redox buffers were employed to prepare doxorubicin-loaded HSA-LA nanoparticles. The nanocarrier was supposed to release the loaded doxorubicin in reductive and acidic pH media. Fourier-transform infrared spectroscopy and energy dispersive X-ray analysis indicated successful attachment of LA to HSA. The prepared nanoplatform presented improved doxorubicin loading efficiency and content and successfully released the loaded doxorubicin in the expected conditions. Protein corona study indicated that positively charged plasma proteins with molecular weights of nearly 80 kDa are absorbed to the surface of the nanoparticles. Furthermore, it showed desirable UV and storage stability, which implied its robustness and improved shelf life if applied in nanomedicine.


Assuntos
Nanopartículas , Neoplasias , Humanos , Albumina Sérica Humana , Doxorrubicina , Nanopartículas/química , Polietilenoglicóis/química , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
11.
ACS Biomater Sci Eng ; 5(10): 5189-5208, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455225

RESUMO

A nanotheranostic system was developed using α-lactalbumin along with Fe3O4 nanoparticles as an magnetic resonance imaging (MRI) contrast agent for medical imaging and doxorubicin as the therapeutic agent. α-lactalbumin was precipitated and cross-linked using poly(ethylene glycol) and glutaraldehyde. Besides, polyethylenimine was applied to increase the number of amine groups during cross-linking between α-lactalbumin and Fe3O4 nanoparticles. Interestingly, 90% of the initial protein used for the coaggregation process was incorporated in the prepared 130 nm nanocomposites, which facilitated the 85% doxorubicin loading. Formation of pH-sensitive imine bonds between glutaraldehyde and amine groups on α-lactalbumin and polyethylenimine resulted in higher release of doxorubicin at acidic pHs and consequently development of a pH-sensitive nanocarrier. The designed nanocomposite was less immunogenic owing to stimulating the production of less amounts of C3a, C5a, platelet factor 4, glycoprotein IIb/IIIa, platelet-derived ß-thromboglobulin, interleukin-6, and interleukin-1ß compared to the free doxorubicin. Furthermore, 1000 µg/mL nanocomposite led to 0.2% hemolytic activity, much less than the 5% standard limit. The void nanocarrier induced no significant level of cytotoxicity in breast cancer and normal cells following 96 h incubation. The doxorubicin-loaded nanocomposite presented higher cytotoxicity, apoptosis induction, and doxorubicin uptake in cancer cells than free doxorubicin. Conversely, lower cytotoxicity, apoptosis induction, and doxorubicin uptake were observed in normal cells treated with the doxorubicin-loaded nanocarrier compared to free doxorubicin. In line with the results of in vitro experiments, in vivo studies on tumor-bearing mice showed more suppression of tumor growth by the doxorubicin-loaded nanocomposite compared to the free drug. Moreover, the pharmacokinetic study revealed slow release of doxorubicin from the nanocomposite. Besides, in vitro and in vivo MRI studies presented a higher r2/r1 ratio and comparable contrast to the commercially available DOTAREM, respectively. Our findings suggest that this new nanocomposite is a promising nanotheranostic system with promising potential for cancer therapy and diagnosis.

12.
Sci Rep ; 8(1): 17345, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478403

RESUMO

Doxorubicin and paclitaxel, two hydrophobic chemotherapeutic agents, are used in cancer therapies. Presence of hydrophobic patches and a flexible fold could probably make α-Lactalbumin a suitable carrier for hydrophobic drugs. In the present study, a variety of thermodynamic, spectroscopic, computational, and cellular techniques were applied to assess α-lactalbumin potential as a carrier for doxorubicin and paclitaxel. According to isothermal titration calorimetry data, the interaction between α-lactalbumin and doxorubicin or paclitaxel is spontaneous and the K (M-1) value for the interaction of α-lactalbumin and paclitaxel is higher than that for doxorubicin. Differential scanning calorimetry and anisotropy results indicated formation of α-lactalbumin complexes with doxorubicin or paclitaxel. Furthermore, molecular docking and dynamic studies revealed that TRPs are not involved in α-Lac's interaction with Doxorubicin while TRP 60 interacts with paclitaxel. Based on Pace analysis to determine protein thermal stability, doxorubicin and paclitaxel induced higher and lower thermal stability in α-lactalbumin, respectively. Besides, fluorescence lifetime measurements reflected that the interaction between α-lactalbumin with doxorubicin or paclitaxel was of static nature. Therefore, the authors hypothesized that α-lactalbumin could serve as a carrier for doxorubicin and paclitaxel by reducing cytotoxicity and apoptosis which was demonstrated during our in vitro cell studies.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Lactalbumina/química , Paclitaxel/química , Calorimetria/métodos , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Doxorrubicina/farmacocinética , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Polarização de Fluorescência , Humanos , Ligação de Hidrogênio , Lactalbumina/administração & dosagem , Lactalbumina/metabolismo , Simulação de Acoplamento Molecular , Paclitaxel/farmacocinética , Estabilidade Proteica , Termodinâmica
13.
J Basic Microbiol ; 58(7): 609-622, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29775208

RESUMO

Petroleum, as the major energy source, is indispensable from our lives. Presence of compounds resistant to degradation can pose risks for human health and environment. Basidiomycetes have been considered as powerful candidates in biodegradation of petroleum compounds via secreting ligninolytic enzymes. In this study a wood-decaying fungus was isolated by significant degradation ability that was identified as Daedaleopsis sp. by morphological and molecular identification methods. According to GC/MS studies, incubation of heavy crude oil with Daedaleopsis sp. resulted in increased amounts of C24 compounds. Degradation of asphaltene, anthracene, and dibenzofuran by the identified fungal strain was determined to evaluate its potential in biodegradation. After 14 days of incubation, Daedaleopsis sp. could degrade 93.7% and 91.2% of anthracene and dibenzofuran, respectively, in pH 5 and 40 °C in optimized medium, as revealed by GC/FID. Notably, analysis of saturates, aromatics, resins, and asphaltenes showed a reduction of 88.7% and 38% in asphaletene and aromatic fractions. Laccase, lignin peroxidase, and manganese peroxidase activities were enhanced from 51.3, 145.2, 214.5 U ml-1 in the absence to 121.5, 231.4, and 352.5 U ml-1 in the presence of heavy crude oil, respectively. This is the first report that Daedaleopsis sp. can degrade asphaltene and dibenzofuran. Moreover, compared to the reported results of asphaltene biodegradation, this strain was the most successful. Thus, Daedaleopsis sp. could be a promising candidate for biotransformation of heavy crude oil and biodegradation of recalcitrant toxic compounds.


Assuntos
Basidiomycota/fisiologia , Biodegradação Ambiental , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Basidiomycota/classificação , Basidiomycota/isolamento & purificação , DNA Espaçador Ribossômico , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Filogenia , Temperatura
14.
Arch Biochem Biophys ; 647: 54-66, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444458

RESUMO

Altered blood-brain barrier (BBB) permeability may contribute to pathogenesis of diabetes-related central nervous system disorders. Considering the presence of glycated insulin in plasma of type 2 diabetic patients, we hypothesized that glycated insulin could induce changes in paracellular permeability in BBB. Therefore, the authors decided to study the effect of glycated insulin on paracellular permeability in a BBB model and the change induced in insulin conformation upon glycation. In this study, the structural modification was examined by fluorescence and circular dichroism spectroscopies and dynamic light scattering. Cell proliferation and production of ROS in astrocytes and HUVEC cells were analyzed by MTT and spectrofluorometric assays, respectively. Apoptosis induction was determined and confirmed by flow cytometry and western blot analyses, respectively. The permeability was measured Lucifer yellow and FITC-Dextran. According to our results, glycated insulin presented altered conformation and more exposed hydrophobic patches than insulin. Formation of oligomeric species and advanced glycated end products (AGEs) were determined. Lower cell viability, higher apoptosis, and more ROS were detected upon treatment of cells with glycated insulin. Finally, glycated insulin led to increased Lucifer yellow and FITC-dextran transportation across the BBB model which could result from ROS producing and apoptosis-inducing activities of AGE-insulin.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Produtos Finais de Glicação Avançada/metabolismo , Insulina/análogos & derivados , Apoptose , Astrócitos/citologia , Astrócitos/metabolismo , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Insulina/química , Insulina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Toxicol Appl Pharmacol ; 313: 180-194, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984132

RESUMO

INTRODUCTION: Radiotherapy is a potent treatment against breast cancer, which is the most commonly diagnosed cancer among women. However, the emergence of radioresistance due to increased DNA repair leads to radiotherapeutic failure. Applying polyphenols combined with radiation is a more promising method leading to better survival. Enterolactone, a phytoestrogenic polyphenol, has been reported to inhibit an important radioresistance signaling pathway, therefore we conjectured that enterolactone could enhance radiosensitivity in breast cancer. To assess this hypothesis, radiation response of enterolactone treated MDA-MB-231 and T47D cell lines and corresponding cellular mechanisms were investigated. METHODS: Cytotoxicity of enterolactone was measured via MTT assay. Cells were treated with enterolactone before X-irradiation, and clonogenic assay was used to evaluate radiosensitivity. Cell cycle distribution and apoptosis were measured by flow cytometric analysis. In addition, DNA damages and corresponding repair, chromosomal damages, and aberrations were assessed by comet, micronucleus, and cytogenetic assays, respectively. RESULTS: Enterolactone decreased the viability of cells in a concentration- and time dependent manner. Enterolactone significantly enhanced radiosensitivity of cells by abrogating G2/M arrest, impairing DNA repair, and increasing radiation-induced apoptosis. Furthermore, increased chromosomal damages and aberrations were detected in cells treated with enterolactone combined with X-rays than X-ray alone. These effects were more prominent in T47D than MDA-MB-231 cells. DISCUSSION: To our knowledge, this is the first report that enterolactone is a novel radiosensitizer for breast cancer irrespective of estrogen receptor status. Authors propose enterolactone as a candidate for combined therapy to decrease the radiation dose delivered to patients and subsequent side effects.


Assuntos
4-Butirolactona/análogos & derivados , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Reparo do DNA , Lignanas/farmacologia , Radiossensibilizantes/farmacologia , 4-Butirolactona/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos
16.
Food Chem ; 196: 897-902, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26593570

RESUMO

By definition, antioxidants are molecules that inhibit the oxidation of other molecules. Therefore, such compounds have very important clinical roles. In this study alginate polymer was depolymerized by heat treatment. The resulting low molecular weight alginates were investigated by UV-visible spectroscopy, Viscometry, Dynamic light scattering and FT-IR spectroscopy techniques. Antioxidant properties of these heat products were studied by ABTS and superoxide radical scavenging assays. Results showed that heating caused breaks in the polymer chain and so generation of low molecular weight alginates. Antioxidant measurements confirmed antioxidant activity of alginate increased upon a decrease in molecular weight. Therefore, low molecular weight alginate produced by heating could be considered as a stronger antioxidant than alginate polymer. These products could be useful for industrial and biomedical applications.


Assuntos
Alginatos/química , Antioxidantes/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Peso Molecular , Oxirredução , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...