Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Appl Plant Sci ; 12(1): e11568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369976

RESUMO

Premise: A family-specific probe set for sunflowers, Compositae-1061, enables family-wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization. Methods: We developed a Hyb-Seq probe set, Compositae-ParaLoss-1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genus Packera. We performed Hyb-Seq with Compositae-ParaLoss-1272 for 19 Packera taxa that were previously studied using Compositae-1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support. Results: We report that Compositae-ParaLoss-1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae-1061. Most notably, Compositae-ParaLoss-1272 recovered substantially fewer paralogous sequences than Compositae-1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae-1061. Discussion: Given the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae-ParaLoss-1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.

2.
Foods ; 12(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37893757

RESUMO

Aflatoxin contamination of maize is a leading threat to health in Guatemala. This contamination is the result of infection from Aspergillus flavus and has been effectively reduced in other countries through application of nonaflatoxigenic, indigenous strains of A. flavus. We collected 82 maize samples from throughout Guatemala in two years and isolated 272 A. flavus from these samples, including 126 unique genotypes. We provide here a phenotypic and simple sequence repeat (SSR)-based genotypic description of these isolates, as well as an analysis of the diversity of this population. High levels of genetic diversity were observed with the nonaflatoxigenic isolates in this study, but this information contributes to the development of indigenous aflatoxin biocontrol products.

3.
Mol Phylogenet Evol ; 189: 107928, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714444

RESUMO

The Irano-Turanian region is one of the world's richest floristic regions and the centre of diversity for numerous xerophytic plant lineages. However, we still have limited knowledge on the timing of evolution and biogeographic history of its flora, and potential drivers of diversification remain underexplored. To fill this knowledge gap, we focus on the Eurasian genus Jurinea (ca. 200 species), one of the largest plant radiations that diversified in the region. We applied a macroevolutionary integrative approach to explicitly test diversification hypotheses and investigate the relative roles of geography vs. ecology and niche conservatism vs. niche lability in speciation processes. To do so, we gathered a sample comprising 77% of total genus richness and obtained data about (1) its phylogenetic history, recovering 502 nuclear loci sequences; (2) growth forms; (3) ecological niche, compiling data of 21 variables for more than 2500 occurrences; and (4) paleoclimatic conditions, to estimate climatic stability. Our results revealed that climate was a key factor in the evolutionary dynamics of Jurinea. The main diversification and biogeographic events that occurred during past climate changes, which led to colder and drier conditions, are the following: (1) the origin of the genus (10.7 Ma); (2) long-distance dispersals from the Iranian Plateau to adjacent regions (∼7-4 Ma); and (3) the diversification shift during Pliocene-Pleistocene Transition (ca. 3 Ma), when net diversification rate almost doubled. Our results supported the pre-adaptation hypothesis, i.e., the evolutionary success of Jurinea was linked to the retention of the ancestral niche adapted to aridity. Interestingly, the paleoclimatic analyses revealed that in the Iranian Plateau long-term climatic stability favoured old-lineage persistence, resulting in current high species richness of semi-arid and cold adapted clades; whereas moderate climate oscillations stimulated allopatric diversification in the lineages distributed in the Circumboreal region. In contrast, growth form lability and high niche disparity among closely related species in the Central Asian clade suggest adaptive radiation to mountain habitats. In sum, the radiation of Jurinea is the result of both adaptive and non-adaptive processes influenced by climatic, orogenic and ecological factors.


Assuntos
Asteraceae , Evolução Biológica , Filogenia , Irã (Geográfico) , Filogeografia
4.
J Adv Res ; 42: 83-98, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513422

RESUMO

INTRODUCTION: Numerous crops have transitioned to hybrid seed production to increase yields and yield stability through heterosis. However, the molecular mechanisms underlying heterosis and its stability across environments are not yet fully understood. OBJECTIVES: This study aimed to (1) elucidate the genetic and molecular mechanisms underlying heterosis in sunflower, and (2) determine how heterosis is maintained under different environments. METHODS: Genome-wide association (GWA) analyses were employed to assess the effects of presence/absence variants (PAVs) and stop codons on 16 traits phenotyped in the sunflower association mapping population at three locations. To link the GWA results to transcriptomic variation, we sequenced the transcriptomes of two sunflower cultivars and their F1 hybrid (INEDI) under both control and drought conditions and analyzed patterns of gene expression and alternative splicing. RESULTS: Thousands of PAVs were found to affect phenotypic variation using a relaxed significance threshold, and at most such loci the "absence" allele reduced values of heterotic traits, but not those of non-heterotic traits. This pattern was strengthened for PAVs that showed expression complementation in INEDI. Stop codons were much rarer than PAVs and less likely to reduce heterotic trait values. Hybrid expression patterns were enriched for the GO category, sensitivity to stimulus, but all genotypes responded to drought similarily - by up-regulating water stress response pathways and down-regulating metabolic pathways. Changes in alternative splicing were strongly negatively correlated with expression variation, implying that alternative splicing in this system largely acts to reinforce expression responses. CONCLUSION: Our results imply that complementation of expression of PAVs in hybrids is a major contributor to heterosis in sunflower, consistent with the dominance model of heterosis. This mechanism can account for yield stability across different environments. Moreover, given the much larger numbers of PAVs in plant vs. animal genomes, it also offers an explanation for the stronger heterotic responses seen in the former.


Assuntos
Helianthus , Vigor Híbrido , Vigor Híbrido/genética , Helianthus/genética , Estudo de Associação Genômica Ampla , Códon de Terminação , Fenótipo
5.
Toxins (Basel) ; 14(11)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36356005

RESUMO

Aflatoxin contamination of corn is a major threat to the safe food and feed. The United States Federal Grain Inspection Service (FGIS) monitors commercial grain shipments for the presence of aflatoxin. A total of 146 Aspergillus flavus were isolated from 29 highly contaminated grain samples to characterize the visual phenotypes, aflatoxin-producing potential, and genotypes to explore the etiological cause of high aflatoxin contamination of US corn. Five of the isolates had reduced sensitivity (43-49% resistant) to the fungicide azoxystrobin, with the remainder all being over 50% resistant to azoxystrobin at the discriminating dose of 2.5 µg/mL. Only six isolates of the highly aflatoxigenic S morphotype were found, and 48 isolates were non-aflatoxigenic. Analysis of the mating type locus revealed 45% MAT 1-1 and 55% MAT 1-2. The A. flavus population originating from the highly aflatoxin contaminated grain samples was compared to a randomly selected subset of isolates originating from commercial corn samples with typical levels of aflatoxin contamination (average < 50 ppb). Use of simple sequence repeat (SSR) genotyping followed by principal component analysis (PCoA) revealed a similar pattern of genotypic distribution in the two populations, but greater diversity in the FGIS-derived population. The noticeable difference between the two populations was that genotypes identical to strain NRRL 21882, the active component of the aflatoxin biocontrol product Afla-Guard™, were ten times more common in the commercial corn population of A. flavus compared to the population from the high-aflatoxin corn samples. The other similarities between the two populations suggest that high aflatoxin concentrations in corn grain are generally the result of infection with common A. flavus genotypes.


Assuntos
Aflatoxinas , Aspergillus flavus , Estados Unidos , Aspergillus flavus/genética , Aflatoxinas/análise , Zea mays , Estrobilurinas , Grão Comestível/química
6.
J Hered ; 113(3): 288-297, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192723

RESUMO

Hybridization between crops and their wild relatives may promote the evolution of de-domesticated (feral) weeds. Wild sunflower (Helianthus annuus L.) is typically found in ruderal environments, but crop-wild hybridization may facilitate the evolution of weedy populations. Using 1 crop-specific mitochondrial marker (CMS-PET1) and 14 nuclear SSR markers, we studied the origin and genetic diversity of a recently discovered weedy population of sunflower (named BRW). Then, using a resurrection approach, we tested for rapid evolution of weedy traits (seed dormancy, herbicide resistance, and competitive ability) by sampling weedy and wild populations 10 years apart (2007 and 2017). All the weedy plants present the CMS-PET1 cytotype, confirming their feral origin. At the nuclear markers, BRW showed higher genetic diversity than the cultivated lines and low differentiation with one wild population, suggesting that wild hybridization increased their genetic diversity. We found support for rapid evolution towards higher seed dormancy, but not for higher competitive ability or herbicide resistance. Our results highlight the importance of seed dormancy during the earliest stages of adaptation and show that crop-wild hybrids can evolve quickly in agricultural environments.


Assuntos
Domesticação , Helianthus , Produtos Agrícolas/genética , Evolução Molecular , Variação Genética , Helianthus/genética , Dormência de Plantas/genética , Plantas Daninhas/genética
7.
Microbiol Resour Announc ; 11(1): e0090921, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34989604

RESUMO

We report here the whole-genome sequence and draft assembly for a bioherbicidal strain of Albifimbria verrucaria, CABI-IMI 368023, which was formerly identified as Myrothecium verrucaria. This isolate has been well studied for the biological control of important weeds, including kudzu and giant salvinia.

8.
Appl Plant Sci ; 9(7)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34336403

RESUMO

PREMISE: Phylogenetic studies in the Compositae are challenging due to the sheer size of the family and the challenges they pose for molecular tools, ranging from the genomic impact of polyploid events to their very conserved plastid genomes. The search for better molecular tools for phylogenetic studies led to the development of the family-specific Compositae1061 probe set, as well as the universal Angiosperms353 probe set designed for all flowering plants. In this study, we evaluate the extent to which data generated using the family-specific kit and those obtained with the universal kit can be merged for downstream analyses. METHODS: We used comparative methods to verify the presence of shared loci between probe sets. Using two sets of eight samples sequenced with Compositae1061 and Angiosperms353, we ran phylogenetic analyses with and without loci flagged as paralogs, a gene tree discordance analysis, and a complementary phylogenetic analysis mixing samples from both sample sets. RESULTS: Our results show that the Compositae1061 kit provides an average of 721 loci, with 9-46% of them presenting paralogs, while the Angiosperms353 set yields an average of 287 loci, which are less affected by paralogy. Analyses mixing samples from both sets showed that the presence of 30 shared loci in the probe sets allows the combination of data generated in different ways. DISCUSSION: Combining data generated using different probe sets opens up the possibility of collaborative efforts and shared data within the synantherological community.

9.
J Hered ; 111(6): 531-538, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32886780

RESUMO

Plant mitochondria and plastids display an array of inheritance patterns and varying levels of heteroplasmy, where individuals harbor more than 1 version of a mitochondrial or plastid genome. Organelle inheritance in plants has the potential to be quite complex and can vary with plant growth, development, and reproduction. Few studies have sought to investigate these complicated patterns of within-individual variation and inheritance using experimental crosses in plants. We carried out crosses in carrot, Daucus carota L. (Apiaceae), which has previously been shown to exhibit organellar heteroplasmy. We used mitochondrial and plastid markers to begin to disentangle the patterns of organellar inheritance and the fate of heteroplasmic variation, with special focus on cases where the mother displayed heteroplasmy. We also investigated heteroplasmy across the plant, assaying leaf samples at different development stages and ages. Mitochondrial and plastid paternal leakage was rare and offspring received remarkably similar heteroplasmic mixtures to their heteroplasmic mothers, indicating that heteroplasmy is maintained over the course of maternal inheritance. When offspring did differ from their mother, they were likely to exhibit a loss of the genetic variation that was present in their mother. Finally, we found that mitochondrial variation did not vary significantly over plant development, indicating that substantial vegetative sorting did not occur. Our study is one of the first to quantitatively investigate inheritance patterns and heteroplasmy in plants using controlled crosses, and we look forward to future studies making use of whole genome information to study the complex evolutionary dynamics of plant organellar genomes.


Assuntos
Daucus carota/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Heteroplasmia/genética , Herança Multifatorial/genética , Cruzamentos Genéticos , Evolução Molecular , Padrões de Herança/genética , Herança Materna , Mitocôndrias/genética , Organelas/genética , Filogenia , Plastídeos/genética
10.
Mol Phylogenet Evol ; 151: 106903, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32628998

RESUMO

The advent and advance of next generation sequencing over the past two decades made it possible to accumulate large quantities of sequence reads that could be used to assemble complete or nearly complete organelle genomes (plastome or mitogenome). The result has been an explosive increase in the availability of organelle genome sequences with over 4000 different species of green plants currently available on GenBank. During the same time period, plant molecular biologists greatly enhanced the understanding of the structure, repair, replication, recombination, transcription and translation, and inheritance of organelle DNA. Unfortunately many plant evolutionary biologists are unaware of or have overlooked this knowledge, resulting in misrepresentation of several phenomena that are critical for phylogenetic and evolutionary studies using organelle genomes. We believe that confronting these misconceptions about organelle genome organization, composition, and inheritance will improve our understanding of the evolutionary processes that underly organelle evolution. Here we discuss four misconceptions that can limit evolutionary biology studies and lead to inaccurate phylogenies and incorrect structure of the organellar DNA used to infer organelle evolution.


Assuntos
Evolução Biológica , Organelas/metabolismo , Sequência de Bases , Genoma Mitocondrial , Heteroplasmia , Padrões de Herança/genética , Organelas/genética , Filogenia
11.
Front Plant Sci ; 10: 1224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749813

RESUMO

Asteraceae, or the sunflower family, is the largest family of flowering plants and is usually considered difficult to work with, not only due to its size, but also because of the abundant cases of polyploidy and ancient whole-genome duplications. Traditional molecular systematics studies were often impaired by the low levels of variation found in chloroplast markers and the high paralogy of traditional nuclear markers like ITS. Next-generation sequencing and novel phylogenomics methods, such as target capture and Hyb-Seq, have provided new ways of studying the phylogeny of the family with great success. While the resolution of the backbone of the family is in progress with some results already published, smaller studies focusing on internal clades of the phylogeny are important to increase sampling and allow morphological, biogeography, and diversification analyses, as well as serving as basis to test the current infrafamilial classification. Vernonieae is one of the largest tribes in the family, accounting for approximately 1,500 species. From the 1970s to the 1990s, the tribe went through several reappraisals, mainly due to the splitting of the mega genus Vernonia into several smaller segregates. Only three phylogenetic studies focusing on the Vernonieae have been published to date, both using a few molecular markers, overall presenting low resolution and support in deepest nodes, and presenting conflicting topologies when compared. In this study, we present the first attempt at studying the phylogeny of Vernonieae using phylogenomics. Even though our sampling includes only around 4% of the diversity of the tribe, we achieved complete resolution of the phylogeny with high support recovering approximately 700 nuclear markers obtained through target capture. We also analyzed the effect of missing data using two different matrices with different number of markers and the difference between concatenated and gene tree analysis.

12.
Appl Plant Sci ; 7(10): e11295, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667023

RESUMO

PREMISE: Hybrid capture with high-throughput sequencing (Hyb-Seq) is a powerful tool for evolutionary studies. The applicability of an Asteraceae family-specific Hyb-Seq probe set and the outcomes of different phylogenetic analyses are investigated here. METHODS: Hyb-Seq data from 112 Asteraceae samples were organized into groups at different taxonomic levels (tribe, genus, and species). For each group, data sets of non-paralogous loci were built and proportions of parsimony informative characters estimated. The impacts of analyzing alternative data sets, removing long branches, and type of analysis on tree resolution and inferred topologies were investigated in tribe Cichorieae. RESULTS: Alignments of the Asteraceae family-wide Hyb-Seq locus set were parsimony informative at all taxonomic levels. Levels of resolution and topologies inferred at shallower nodes differed depending on the locus data set and the type of analysis, and were affected by the presence of long branches. DISCUSSION: The approach used to build a Hyb-Seq locus data set influenced resolution and topologies inferred in phylogenetic analyses. Removal of long branches improved the reliability of topological inferences in maximum likelihood analyses. The Astereaceae Hyb-Seq probe set is applicable at multiple taxonomic depths, which demonstrates that probe sets do not necessarily need to be lineage-specific.

13.
PLoS One ; 14(10): e0224123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31634380

RESUMO

Combining population genetic studies with demographic surveys in long-lived clonal herbs can yield insight into the population dynamics of clonal plant populations. In this study, we assayed clonal diversity and spatial genetic structure in a population of a long-lived understory herb, Trillium recurvatum, that has been the focus of a demographic study spanning 26 years at the Meeman Biological Station in Memphis, Tennessee, USA. Using a set of five newly developed simple sequence repeat markers first reported here, we assessed 1) the extent of clonal diversity within the Meeman site, 2) the degree to which genetic diversity varies with stage class (juvenile, non-flowering, and flowering adults) at this site, 3) whether there is spatial genetic structure at the Meeman site, and 4) how measures of genetic diversity and inbreeding at the Meeman site compare to two additional nearby populations. Along with these analyses, we calculated and compared traditional population genetic metrics with information theory-based diversity indices. Although clonal propagation was present, the focal population displayed moderate levels of clonal diversity comprising 81 genets from the 174 individuals sampled. In the focal site, we also found that genetic diversity was highest in the flowering stage class when compared to the non-flowering and juvenile classes. We report that genets exhibited spatial genetic structure in the focal site exhibiting values for the Sp statistic of 0.00199 for linear distance and 0.0271 for log distance. Measures of unbiased gene diversity and the inbreeding coefficient were comparable across the sampled populations. Our results provide complementary genetic data to previous demographic studies in T. recurvatum, and these findings provide data for future studies aimed at integrating the degree of clonality, genetic variation, and population dynamics in this species. Our findings suggest that T. recurvatum at the focal Meeman site displays higher levels of sexual reproduction than were previously suggested, and spatial genetic structure estimates were comparable to other plant species with mixed and outcrossing mating strategies.


Assuntos
Células Clonais , Marcadores Genéticos , Variação Genética , Genética Populacional , Magnoliopsida/genética , Reprodução , Endogamia , Magnoliopsida/classificação
14.
J Hered ; 110(6): 746-759, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31353398

RESUMO

Studying the levels and patterns of genetic diversity of invasive populations is important to understand the evolutionary and ecological factors promoting invasions and for better designing preventive and control strategies. Wild sunflower (Helianthus annuus L.) is native to North America and was introduced, and has become invasive, in several countries, including Argentina (ARG). Here, using classical population genetic analyses and approximate Bayesian computation (ABC) modeling, we studied the invasion history of wild sunflower in ARG. We analyzed 115 individuals belonging to 15 populations from ARG (invasive range) and United States (US, native range) at 14 nuclear and 3 chloroplast simple sequence repeat markers along with 23 phenotypic variables. Populations from ARG showed similar levels of nuclear genetic diversity to US populations and higher genetic diversity in the chloroplast genome, indicating no severe genetic bottlenecks during the invasion process. Bayesian clustering analysis, based on nuclear markers, suggests the presence of 3 genetic clusters, all present in both US and ARG. Discriminant analysis of principal components (DAPC) detected an overall low population structure between central US and ARG populations but separated 2 invasive populations from the rest. ABC modeling supports multiple introductions but also a southward dispersal within ARG. Genetic and phenotypic data support the central US as a source of introduction while the source of secondary introductions could not be resolved. Finally, using genetic markers from the chloroplast genome, we found lower population structure in ARG when compared with US populations, suggesting a role for seed-mediated gene flow in Argentina.


Assuntos
Variação Genética , Genética Populacional , Helianthus/genética , Espécies Introduzidas , Argentina , Genótipo , Haplótipos , Repetições de Microssatélites , Fenótipo , Estados Unidos
15.
Proc Natl Acad Sci U S A ; 116(28): 14083-14088, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209018

RESUMO

The sunflower family, Asteraceae, comprises 10% of all flowering plant species and displays an incredible diversity of form. Asteraceae are clearly monophyletic, yet resolving phylogenetic relationships within the family has proven difficult, hindering our ability to understand its origin and diversification. Recent molecular clock dating has suggested a Cretaceous origin, but the lack of deep sampling of many genes and representative taxa from across the family has impeded the resolution of migration routes and diversifications that led to its global distribution and tremendous diversity. Here we use genomic data from 256 terminals to estimate evolutionary relationships, timing of diversification(s), and biogeographic patterns. Our study places the origin of Asteraceae at ∼83 MYA in the late Cretaceous and reveals that the family underwent a series of explosive radiations during the Eocene which were accompanied by accelerations in diversification rates. The lineages that gave rise to nearly 95% of extant species originated and began diversifying during the middle Eocene, coincident with the ensuing marked cooling during this period. Phylogenetic and biogeographic analyses support a South American origin of the family with subsequent dispersals into North America and then to Asia and Africa, later followed by multiple worldwide dispersals in many directions. The rapid mid-Eocene diversification is aligned with the biogeographic range shift to Africa where many of the modern-day tribes appear to have originated. Our robust phylogeny provides a framework for future studies aimed at understanding the role of the macroevolutionary patterns and processes that generated the enormous species diversity of Asteraceae.


Assuntos
Asteraceae/genética , Evolução Biológica , Genoma de Planta/genética , Filogenia , África , Ásia , Asteraceae/classificação , Magnoliopsida/genética , América do Norte , América do Sul
16.
Integr Comp Biol ; 59(4): 1005-1015, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31187130

RESUMO

Organellar genomes are considered to be strictly uniparentally-inherited. Uniparental inheritance allows for cytonuclear coevolution and the development of highly coordinated cytonuclear interactions. Yet, instances of biparental inheritance have been documented across eukaryotes. Biparental inheritance in otherwise uniparentally-inherited organelles is termed leakage (maternal or paternal) and allows for the presence of multiple variants of the same organellar genome within an individual, called heteroplasmy. It is unclear what, if any, evolutionary consequences are placed on nuclear and/or organellar genomes due to heteroplasmy. One way of accessing cytonuclear interactions and potential coevolution is through calculating cytonuclear linkage disequilibrium (cnLD), or the non-random association of alleles between nuclear and organellar genomes. Patterns of cnLD can indicate positive or negative cytonuclear selection, coevolution between the nuclear and organellar genomes, non-traditional organellar inheritance, or instances of ancestral heteroplasmy. In plants, cytonuclear interactions have been shown to play a role in cytoplasmic male sterility which occurs in gynodioecious species and is associated with leakage. We used the gynodioecious species, Daucus carota L. spp. carota, or wild carrot, to investigate cnLD. We genotyped a total of 265 individuals from two regions of the USA at 15 nuclear microsatellites, the mitochondrial genes cox1 and atp9, and an intergenic region between trnS and trnG (StoG) in the plastid genome to calculate nuclear-nuclear LD (nucLD), cnLD, and organellar LD (i.e., within the mtDNA and between mtDNA and ptDNA) within the two regions. We were further able to identify cox1 and StoG heteroplasmy and calculate some of the same LD measures within heteroplasmic and homoplasmic (non-heteroplasmic) datasets. We used a Z-transformation test to demonstrate that heteroplasmic individuals display significantly higher levels of cnLD within both regions. In spite of this, within and between organellar LD is low to moderate. Given these patterns of LD in two regions of the USA in which gene flow has been shown to occur between crop and wild carrot, we suggest that heteroplasmy is an evolutionary mechanism which permits the maintenance of cnLD while also acting to disrupt organellar LD.


Assuntos
Núcleo Celular/genética , Daucus carota/genética , Genoma/genética , Desequilíbrio de Ligação , Organelas/genética , Estados Unidos
17.
Appl Plant Sci ; 7(6): e11268, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236315

RESUMO

PREMISE: The genus Antennaria has a complex evolutionary history due to dioecism, excessive polyploidy, and the evolution of polyploid agamic complexes. We developed microsatellite markers from A. corymbosa to investigate genetic diversity and population genetic structure in Antennaria species. METHODS AND RESULTS: Twenty-four novel microsatellite markers (16 nuclear and eight chloroplast) were developed from A. corymbosa using an enriched genomic library. Ten polymorphic nuclear markers were used to characterize genetic variation in five populations of A. corymbosa. One to four alleles were found per locus, and the expected heterozygosity and fixation index ranged from 0.00 to 0.675 and -0.033 to 0.610, respectively. We were also able to successfully amplify these markers in five additional Antennaria species. CONCLUSIONS: These markers are promising tools to study the population genetics of sexual Antennaria species and to investigate interspecific gene flow, clonal diversity, and parentage of Antennaria polyploid agamic complexes.

18.
Bioinformatics ; 35(21): 4411-4412, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31038667

RESUMO

SUMMARY: Although heteroplasmy has been studied extensively in animal systems, there is a lack of tools for analyzing, exploring and visualizing heteroplasmy at the genome-wide level in other taxonomic systems. We introduce icHET, which is a computational workflow that produces an interactive visualization that facilitates the exploration, analysis and discovery of heteroplasmy across multiple genomic samples. icHET works on short reads from multiple samples from any organism with an organellar reference genome (mitochondrial or plastid) and a nuclear reference genome. AVAILABILITY AND IMPLEMENTATION: The software is available at https://github.com/vtphan/HeteroplasmyWorkflow. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Animais , Genoma , Fluxo de Trabalho
19.
Mol Phylogenet Evol ; 137: 313-332, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059792

RESUMO

Classification of tribe Cardueae in natural subtribes has always been a challenge due to the lack of support of some critical branches in previous phylogenies based on traditional Sanger markers. With the aim to propose a new subtribal delimitation, we applied a Hyb-Seq approach to a set of 76 Cardueae species representing all subtribes and informal groups defined in the tribe, targeting 1061 nuclear conserved orthology loci (COS) designed for Compositae and obtaining chloroplast coding regions as by-product of off-target reads. For the extraction of the target nuclear data, we used two strategies, PHYLUCE and HybPiper, and 776 and 1055 COS loci were recovered with each of them, respectively. Additionally, 87 chloroplast genes were assembled and annotated. With three datasets, phylogenetic relationships were reconstructed using both concatenation and coalescent approaches. Phylogenetic analyses of the nuclear datasets fully resolved virtually all nodes with very high support. Nuclear and plastid tree topologies are mostly congruent with a very limited number of incongruent nodes. Based on the well-solved phylogenies obtained, we propose a new taxonomic scheme of 12 monophyletic and morphologically consistent subtribes: Carlininae, Cardopatiinae, Echinopsinae, Dipterocominae (new), Xerantheminae (new), Berardiinae (new), Staehelininae (new), Onopordinae (new), Carduinae (redelimited), Arctiinae (new), Saussureinae (new), and Centaureinae. In addition, we further updated the temporal framework for origin and diversification of these subtribes. Our results highlight the power of Hyb-Seq over Sanger sequencing of a few DNA markers in solving phylogenetic relationships of traditionally difficult groups.


Assuntos
Asteraceae/classificação , Asteraceae/genética , Núcleo Celular/genética , DNA de Plantas/genética , Variação Genética , Filogenia , Plastídeos/genética , Análise de Sequência de DNA , Calibragem , Bases de Dados Genéticas , Geografia , Fatores de Tempo
20.
Nat Plants ; 5(5): 455-456, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31061534
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...