Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(9): 984-993, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37042748

RESUMO

"What I cannot create, I do not understand"─Richard Feynman. This sentiment motivates the entire field of artificial metalloenzymes. Naturally occurring enzymes catalyze reactions with efficiencies, rates, and selectivity that generally cannot be achieved in synthetic systems. Many of these processes represent vital building blocks for a sustainable society, including CO2 conversion, nitrogen fixation, water oxidation, and liquid fuel synthesis. Our inability as chemists to fully reproduce the functionality of naturally occurring enzymes implicates yet-unknown contributors to reactivity. To identify these properties, it is necessary to consider all of the components of naturally occurring metalloenzymes, from the active site metal(s) to large-scale dynamics. In this Account, we describe the holistic development of a metalloprotein-based model that functionally reproduces the acetyl coenzyme A synthase (ACS) enzyme.ACS catalyzes the synthesis of a thioester, acetyl coenzyme A, from gaseous carbon monoxide, a methyl group donated by a cobalt corrinoid protein, and coenzyme A. The active site of ACS contains a bimetallic nickel site coupled to a [4Fe-4S] cluster. This reaction mimics Monsanto's acetic acid synthesis and represents an ancient process for incorporating inorganic carbon into cellular biomass through the primordial Wood-Ljungdahl metabolic pathway. From a sustainability standpoint, the reversible conversion of C1 substrates into an acetyl group and selective downstream transfer to a thiolate nucleophile offer opportunities to expand this reactivity to the anthropogenic synthesis of liquid fuels. However, substantial gaps in our understanding of the ACS catalytic mechanism coupled with the enzyme's oxygen sensitivity and general instability have limited these applications. It is our hope that development of an artificial metalloenzyme that carries out ACS-like reactions will advance our mechanistic understanding and enable synthesis of robust compounds with the capacity for similar reactivity.To construct this model, we first focused on the catalytic proximal nickel (NiP) site, which has a single metal center bound by three bridging cysteine residues in a "Y"-shaped arrangement. With an initial emphasis on reproducing the general structure of a low-coordinate metal binding site, the type I cupredoxin, azurin, was selected as the protein scaffold, and a nickel center was incorporated into the mononuclear site. Using numerous spectroscopic and computational techniques, including electron paramagnetic resonance (EPR) spectroscopy, nickel-substituted azurin was shown to have similar electronic and geometric structures to the NiP center in ACS. A substrate access channel was installed, and both carbon monoxide and a methyl group were shown to bind individually to the reduced NiI center. The elusive EPR-active S = 1/2 Ni-CH3 species, which has never been detected in native ACS, was observed in the azurin-based model, establishing the capacity of a biological NiI species to support two-electron organometallic reactions. Pulsed EPR studies on the S = 1/2 Ni-CH3 species in azurin suggested a noncanonical electronic structure with an inverted ligand field, which was proposed to prevent irreversible site degradation. This model azurin protein was ultimately shown to perform carbon-carbon and carbon-sulfur bond formation using sequential, ordered substrate addition for selective, stoichiometric thioester synthesis. X-ray spectroscopic methods were used to provide characterization of the remaining catalytic intermediates, resolving some debate over key mechanistic details.The overall approach and strategies that we employed for the successful construction of a functional protein-based model of ACS are described in this Account. We anticipate that these principles can be adapted across diverse metalloenzyme classes, providing essential mechanistic details and guiding the development of next-generation, functional artificial metalloenzymes.


Assuntos
Azurina , Metaloproteínas , Azurina/metabolismo , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Níquel/química , Monóxido de Carbono/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica
2.
Biochemistry ; 62(5): 1082-1092, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36812111

RESUMO

The diheme bacterial cytochrome c peroxidase (bCcP)/MauG superfamily is a diverse set of enzymes that remains largely uncharacterized. One recently discovered member, MbnH, converts a tryptophan residue in its substrate protein, MbnP, to kynurenine. Here we show that upon reaction with H2O2, MbnH forms a bis-Fe(IV) intermediate, a state previously detected in just two other enzymes, MauG and BthA. Using absorption, Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies coupled with kinetic analysis, we characterized the bis-Fe(IV) state of MbnH and determined that this intermediate decays back to the diferric state in the absence of MbnP substrate. In the absence of MbnP substrate, MbnH can also detoxify H2O2 to prevent oxidative self damage, unlike MauG, which has long been viewed as the prototype for bis-Fe(IV) forming enzymes. MbnH performs a different reaction from MauG, while the role of BthA remains unclear. All three enzymes can form a bis-Fe(IV) intermediate but within distinct kinetic regimes. The study of MbnH significantly expands our knowledge of enzymes that form this species. Computational and structural analyses indicate that electron transfer between the two heme groups in MbnH and between MbnH and the target tryptophan in MbnP likely occurs via a hole-hopping mechanism involving intervening tryptophan residues. These findings set the stage for discovery of additional functional and mechanistic diversity within the bCcP/MauG superfamily.


Assuntos
Methylosinus trichosporium , Methylosinus trichosporium/metabolismo , Triptofano/química , Cinética , Peróxido de Hidrogênio/metabolismo , Oxirredução , Bactérias/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(30): e2123022119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858422

RESUMO

The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetyl-CoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the NiI species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation.


Assuntos
Aldeído Oxirredutases , Azurina , Ésteres , Complexos Multienzimáticos , Níquel , Origem da Vida , Compostos de Enxofre , Aldeído Oxirredutases/química , Azurina/química , Catálise , Ésteres/síntese química , Modelos Químicos , Complexos Multienzimáticos/química , Níquel/química , Compostos de Enxofre/síntese química
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074779

RESUMO

Some methane-oxidizing bacteria use the ribosomally synthesized, posttranslationally modified natural product methanobactin (Mbn) to acquire copper for their primary metabolic enzyme, particulate methane monooxygenase. The operons encoding the machinery to biosynthesize and transport Mbns typically include genes for two proteins, MbnH and MbnP, which are also found as a pair in other genomic contexts related to copper homeostasis. While the MbnH protein, a member of the bacterial diheme cytochrome c peroxidase (bCcP)/MauG superfamily, has been characterized, the structure and function of MbnP, the relationship between the two proteins, and their role in copper homeostasis remain unclear. Biochemical characterization of MbnP from the methanotroph Methylosinus trichosporium OB3b now reveals that MbnP binds a single copper ion, present in the +1 oxidation state, with high affinity. Copper binding to MbnP in vivo is dependent on oxidation of the first tryptophan in a conserved WxW motif to a kynurenine, a transformation that occurs through an interaction of MbnH with MbnP. The 2.04-Å-resolution crystal structure of MbnP reveals a unique fold and an unusual copper-binding site involving a histidine, a methionine, a solvent ligand, and the kynurenine. Although the kynurenine residue may not serve as a CuI primary-sphere ligand, being positioned ∼2.9 Å away from the CuI ion, its presence is required for copper binding. Genomic neighborhood analysis indicates that MbnP proteins, and by extension kynurenine-containing copper sites, are widespread and may play diverse roles in microbial copper homeostasis.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Cinurenina/química , Metaloproteínas/química , Methylosinus trichosporium/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Cinurenina/biossíntese , Cinurenina/genética , Metaloproteínas/genética , Metaloproteínas/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Domínios Proteicos
5.
J Am Chem Soc ; 143(2): 849-867, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33415980

RESUMO

The biological global carbon cycle is largely regulated through microbial nickel enzymes, including carbon monoxide dehydrogenase (CODH), acetyl coenzyme A synthase (ACS), and methyl coenzyme M reductase (MCR). These systems are suggested to utilize organometallic intermediates during catalysis, though characterization of these species has remained challenging. We have established a mutant of nickel-substituted azurin as a scaffold upon which to develop protein-based models of enzymatic intermediates, including the organometallic states of ACS. In this work, we report the comprehensive investigation of the S = 1/2 Ni-CO and Ni-CH3 states using pulsed EPR spectroscopy and computational techniques. While the Ni-CO state shows conventional metal-ligand interactions and a classical ligand field, the Ni-CH3 hyperfine interactions between the methyl protons and the nickel indicate a closer distance than would be expected for an anionic methyl ligand. Structural analysis instead suggests a near-planar methyl ligand that can be best described as cationic. Consistent with this conclusion, the frontier molecular orbitals of the Ni-CH3 species indicate a ligand-centered LUMO, with a d9 population on the metal center, rather than the d7 population expected for a typical metal-alkyl species generated by oxidative addition. Collectively, these data support the presence of an inverted ligand field configuration for the Ni-CH3 Az species, in which the lowest unoccupied orbital is centered on the ligands rather than the more electropositive metal. These analyses provide the first evidence for an inverted ligand field within a biological system. The functional relevance of the electronic structures of both the Ni-CO and Ni-CH3 species are discussed in the context of native ACS, and an inverted ligand field is proposed as a mechanism by which to gate reactivity both within ACS and in other thiolate-containing metalloenzymes.


Assuntos
Acetilcoenzima A/metabolismo , Monóxido de Carbono/metabolismo , Teoria da Densidade Funcional , Níquel/metabolismo , Compostos Organometálicos/metabolismo , Acetilcoenzima A/química , Monóxido de Carbono/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Níquel/química , Compostos Organometálicos/química
6.
J Biol Chem ; 294(44): 16141-16151, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511324

RESUMO

Methanobactins (Mbns) are ribosomally-produced, post-translationally modified peptidic copper-binding natural products produced under conditions of copper limitation. Genes encoding Mbn biosynthetic and transport proteins have been identified in a wide variety of bacteria, indicating a broader role for Mbns in bacterial metal homeostasis. Many of the genes in the Mbn operons have been assigned functions, but two genes usually present, mbnP and mbnH, encode uncharacterized proteins predicted to reside in the periplasm. MbnH belongs to the bacterial diheme cytochrome c peroxidase (bCcP)/MauG protein family, and MbnP contains no domains of known function. Here, we performed a detailed bioinformatic analysis of both proteins and have biochemically characterized MbnH from Methylosinus (Ms.) trichosporium OB3b. We note that the mbnH and mbnP genes typically co-occur and are located proximal to genes associated with microbial copper homeostasis. Our bioinformatics analysis also revealed that the bCcP/MauG family is significantly more diverse than originally appreciated, and that MbnH is most closely related to the MauG subfamily. A 2.6 Å resolution structure of Ms. trichosporium OB3b MbnH combined with spectroscopic data and peroxidase activity assays provided evidence that MbnH indeed more closely resembles MauG than bCcPs, although its redox properties are significantly different from those of MauG. The overall similarity of MbnH to MauG suggests that MbnH could post-translationally modify a macromolecule, such as internalized CuMbn or its uncharacterized partner protein, MbnP. Our results indicate that MbnH is a MauG-like diheme protein that is likely involved in microbial copper homeostasis and represents a new family within the bCcP/MauG superfamily.


Assuntos
Cobre/metabolismo , Imidazóis/metabolismo , Methylosinus trichosporium/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Sequência de Aminoácidos/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Homeostase , Oligopeptídeos/biossíntese , Óperon/genética , Processamento de Proteína Pós-Traducional
7.
Inorg Chem ; 58(14): 8969-8982, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30788970

RESUMO

Nickel-containing enzymes such as methyl coenzyme M reductase (MCR) and carbon monoxide dehydrogenase/acetyl coenzyme A synthase (CODH/ACS) play a critical role in global energy conversion reactions, with significant contributions to carbon-centered processes. These enzymes are implied to cycle through a series of nickel-based organometallic intermediates during catalysis, though identification of these intermediates remains challenging. In this work, we have developed and characterized a nickel-containing metalloprotein that models the methyl-bound organometallic intermediates proposed in the native enzymes. Using a nickel(I)-substituted azurin mutant, we demonstrate that alkyl binding occurs via nucleophilic addition of methyl iodide as a methyl donor. The paramagnetic NiIII-CH3 species initially generated can be rapidly reduced to a high-spin NiII-CH3 species in the presence of exogenous reducing agent, following a reaction sequence analogous to that proposed for ACS. These two distinct bioorganometallic species have been characterized by optical, EPR, XAS, and MCD spectroscopy, and the overall mechanism describing methyl reactivity with nickel azurin has been quantitatively modeled using global kinetic simulations. A comparison between the nickel azurin protein system and existing ACS model compounds is presented. NiIII-CH3 Az is only the second example of two-electron addition of methyl iodide to a NiI center to give an isolable species and the first to be formed in a biologically relevant system. These results highlight the divergent reactivity of nickel across the two intermediates, with implications for likely reaction mechanisms and catalytically relevant states in the native ACS enzyme.


Assuntos
Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Níquel/química , Compostos Organometálicos/química , Azurina/genética , Azurina/metabolismo , Catálise , Cromatografia Gasosa , Regulação Bacteriana da Expressão Gênica , Cinética , Fenômenos Magnéticos , Mutação , Compostos Organometálicos/metabolismo , Pseudomonas aeruginosa/enzimologia , Análise Espectral
8.
Dalton Trans ; 47(42): 15206-15216, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30324201

RESUMO

Rising levels of atmospheric carbon dioxide continue to motivate the development of catalysts that can efficiently convert CO2 to useful products in water without substantial amounts of H2 formed as a byproduct. In addition to synthetic efforts, mechanistic investigations on existing catalysts are necessary to understand the molecular factors contributing to activity and selectivity, which can guide rational improvements and increase catalyst robustness. [Ni(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) is one such catalyst, known for decades to be capable of selective CO2 reduction to CO in water, but with little mechanistic information experimentally established or catalytic intermediates characterized. To better understand the mechanisms of aqueous H+ and CO2 reduction by [Ni(cyclam)]2+, spectroelectrochemical investigations were performed in conjunction with activity assays. Both large surface area glassy carbon and amorphous graphite rod working electrodes were tested, with the latter found to be significantly more active and selective for CO production. Optical, resonance Raman, and EPR spectroelectrochemical experiments on [Ni(cyclam)]2+ during catalysis under N2, CO2, and CO gases show the appearance of a single species, independent of electrode used. Identical signals are observed under oxidizing potentials. Spectroscopic and electrochemical analysis coupled with density functional theory calculations suggest that the signals observed originate from [Ni(cyclam)(H2PO4)]2+. The generation of a NiIII species under catalytic, reducing conditions suggests an ECCE mechanism for H+ reduction by [Ni(cyclam)]2+, which differs from the proton-coupled, ECEC pathway proposed for CO2 reduction. The divergent mechanisms seen for the two reactions may underlie the differential reactivity of [Ni(cyclam)]2+ towards each substrate, with implications for the design of increasingly selective molecular catalysts. This observation also highlights the substantial impact of buffer and electrode choice when characterizing and benchmarking the catalytic properties of new compounds.

9.
Chem Commun (Camb) ; 54(37): 4681-4684, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29675518

RESUMO

A series of artificial metalloenzymes containing a ruthenium chromophore and [NiII(cyclam)]2+, both incorporated site-selectively, have been constructed within an azurin protein scaffold. These light-driven, semisynthetic enzymes do not evolve hydrogen, thus displaying complete selectivity for CO2 reduction to CO. Electrostatic effects rather than direct excited-state electron transfer dominate the ruthenium photophysics, suggesting that intramolecular electron transfer from photogenerated RuI to [NiII(cyclam)]2+ represents the first step in catalysis. Stern-Volmer analyses rationalize the observation that ascorbate is the only sacrificial electron donor that supports turnover. Collectively, these results highlight the important interplay of elements that must be considered when developing and characterizing molecular catalysts.

10.
J Am Chem Soc ; 139(30): 10328-10338, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28675928

RESUMO

The acetyl coenzyme A synthase (ACS) enzyme plays a central role in the metabolism of anaerobic bacteria and archaea, catalyzing the reversible synthesis of acetyl-CoA from CO and a methyl group through a series of nickel-based organometallic intermediates. Owing to the extreme complexity of the native enzyme systems, the mechanism by which this catalysis occurs remains poorly understood. In this work, we have developed a protein-based model for the NiP center of acetyl coenzyme A synthase using a nickel-substituted azurin protein (NiAz). NiAz is the first model nickel protein system capable of accessing three (NiI/NiII/NiIII) distinct oxidation states within a physiological potential range in aqueous solution, a critical feature for achieving organometallic ACS activity, and binds CO and -CH3 groups with biologically relevant affinity. Characterization of the NiI-CO species through spectroscopic and computational techniques reveals fundamentally similar features between the model NiAz system and the native ACS enzyme, highlighting the potential for related reactivity in this model protein. This work provides insight into the enzymatic process, with implications toward engineering biological catalysts for organometallic processes.


Assuntos
Acetato-CoA Ligase/metabolismo , Monóxido de Carbono/química , Metaloproteínas/química , Níquel/química , Acetato-CoA Ligase/química , Monóxido de Carbono/metabolismo , Elétrons , Metaloproteínas/isolamento & purificação , Metaloproteínas/metabolismo , Modelos Moleculares , Níquel/metabolismo , Oxirredução , Pseudomonas aeruginosa/enzimologia
11.
Inorg Chem ; 54(16): 7959-67, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26234790

RESUMO

Nickel-containing enzymes are key players in global hydrogen, carbon dioxide, and methane cycles. Many of these enzymes rely on Ni(I) oxidation states in critical catalytic intermediates. However, due to the highly reactive nature of these species, their isolation within metalloenzymes has often proved elusive. In this report, we describe and characterize a model biological Ni(I) species that has been generated within the electron transfer protein, azurin. Replacement of the native copper cofactor with nickel is shown to preserve the redox activity of the protein. The Ni(II/I) couple is observed at -590 mV versus NHE, with an interfacial electron transfer rate of 70 s(-1). Chemical reduction of Ni(II)Az generates a stable species with strong absorption features at 350 nm and a highly anisotropic, axial EPR signal with principal g-values of 2.56 and 2.10. Density functional theory calculations provide insight into the electronic and geometric structure of the Ni(I) species, suggesting a trigonal planar coordination environment. The predicted spectroscopic features of this low-coordinate nickel site are in good agreement with the experimental data. Molecular orbital analysis suggests potential for both metal-centered and ligand-centered reactivity, highlighting the covalency of the metal-thiolate bond. Characterization of a stable Ni(I) species within a model protein has implications for understanding the mechanisms of complex enzymes, including acetyl coenzyme A synthase, and developing scaffolds for unique reactivity.


Assuntos
Acetilcoenzima A/metabolismo , Azurina/química , Materiais Biomiméticos/química , Níquel/química , Teoria Quântica , Acetilcoenzima A/química , Azurina/metabolismo , Materiais Biomiméticos/metabolismo , Cobre/química , Eletroquímica , Modelos Moleculares , Conformação Proteica , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...