Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Brief Funct Genomics ; 23(1): 46-54, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36752040

RESUMO

Long-range ribonucleic acid (RNA)-RNA interactions (RRI) are prevalent in positive-strand RNA viruses, including Beta-coronaviruses, and these take part in regulatory roles, including the regulation of sub-genomic RNA production rates. Crosslinking of interacting RNAs and short read-based deep sequencing of resulting RNA-RNA hybrids have shown that these long-range structures exist in severe acute respiratory syndrome coronavirus (SARS-CoV)-2 on both genomic and sub-genomic levels and in dynamic topologies. Furthermore, co-evolution of coronaviruses with their hosts is navigated by genetic variations made possible by its large genome, high recombination frequency and a high mutation rate. SARS-CoV-2's mutations are known to occur spontaneously during replication, and thousands of aggregate mutations have been reported since the emergence of the virus. Although many long-range RRIs have been experimentally identified using high-throughput methods for the wild-type SARS-CoV-2 strain, evolutionary trajectory of these RRIs across variants, impact of mutations on RRIs and interaction of SARS-CoV-2 RNAs with the host have been largely open questions in the field. In this review, we summarize recent computational tools and experimental methods that have been enabling the mapping of RRIs in viral genomes, with a specific focus on SARS-CoV-2. We also present available informatics resources to navigate the RRI maps and shed light on the impact of mutations on the RRI space in viral genomes. Investigating the evolution of long-range RNA interactions and that of virus-host interactions can contribute to the understanding of new and emerging variants as well as aid in developing improved RNA therapeutics critical for combating future outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , RNA Viral/genética , Mutação/genética , Genoma Viral
2.
BMC Mol Cell Biol ; 24(1): 26, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592256

RESUMO

BACKGROUND: Heterogeneous nuclear ribonucleoprotein K (HNRNPK) regulates pre-mRNA processing and long non-coding RNA localization in the nucleus. It was previously shown that shuttling of HNRNPK to the cytoplasm promotes cell proliferation and cancer metastasis. However, the mechanism of HNRNPK cytoplasmic localization, its cytoplasmic RNA ligands, and impact on post-transcriptional gene regulation remain uncharacterized. RESULTS: Here we show that the intermediate filament protein Keratin 19 (K19) directly interacts with HNRNPK and sequesters it in the cytoplasm. Correspondingly, in K19 knockout breast cancer cells, HNRNPK does not localize in the cytoplasm, resulting in reduced cell proliferation. We comprehensively mapped HNRNPK binding sites on mRNAs and showed that, in the cytoplasm, K19-mediated HNRNPK-retention increases the abundance of target mRNAs bound to the 3' untranslated region (3'UTR) at the expected cytidine-rich (C-rich) sequence elements. Furthermore, these mRNAs protected by HNRNPK in the cytoplasm are typically involved in cancer progression and include the p53 signaling pathway that is dysregulated upon HNRNPK knockdown (HNRNPK KD) or K19 knockout (KRT19 KO). CONCLUSIONS: This study identifies how a cytoskeletal protein can directly regulate gene expression by controlling the subcellular localization of RNA-binding proteins to support pathways involved in cancer progression.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , RNA Mensageiro/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Queratina-19 , Citoplasma , Regiões 3' não Traduzidas/genética
3.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232353

RESUMO

Since the start of the COVID-19 pandemic, understanding the pathology of the SARS-CoV-2 RNA virus and its life cycle has been the priority of many researchers. Currently, new variants of the virus have emerged with various levels of pathogenicity and abundance within the human-host population. Although much of viral pathogenicity is attributed to the viral Spike protein's binding affinity to human lung cells' ACE2 receptor, comprehensive knowledge on the distinctive features of viral variants that might affect their life cycle and pathogenicity is yet to be attained. Recent in vivo studies into the RNA structure of the SARS-CoV-2 genome have revealed certain long-range RNA-RNA interactions. Using in silico predictions and a large population of SARS-CoV-2 sequences, we observed variant-specific evolutionary changes for certain long-range RRIs. We also found statistical evidence for the existence of one of the thermodynamic-based RRI predictions, namely Comp1, in the Beta variant sequences. A similar test that disregarded sequence variant information did not, however, lead to significant results. When performing population-based analyses, aggregate tests may fail to identify novel interactions due to variant-specific changes. Variant-specific analyses can result in de novo RRI identification.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas Virais/genética , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Humanos , Pandemias , Poliproteínas/genética , RNA Viral/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
PLoS One ; 17(9): e0260331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048827

RESUMO

SARS-CoV-2 has affected people worldwide as the causative agent of COVID-19. The virus is related to the highly lethal SARS-CoV-1 responsible for the 2002-2003 SARS outbreak in Asia. Research is ongoing to understand why both viruses have different spreading capacities and mortality rates. Like other beta coronaviruses, RNA-RNA interactions occur between different parts of the viral genomic RNA, resulting in discontinuous transcription and production of various sub-genomic RNAs. These sub-genomic RNAs are then translated into other viral proteins. In this work, we performed a comparative analysis for novel long-range RNA-RNA interactions that may involve the Spike region. Comparing in-silico fragment-based predictions between reference sequences of SARS-CoV-1 and SARS-CoV-2 revealed several predictions amongst which a thermodynamically stable long-range RNA-RNA interaction between (23660-23703 Spike) and (28025-28060 ORF8) unique to SARS-CoV-2 was observed. The patterns of sequence variation using data gathered worldwide further supported the predicted stability of the sub-interacting region (23679-23690 Spike) and (28031-28042 ORF8). Such RNA-RNA interactions can potentially impact viral life cycle including sub-genomic RNA production rates.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas Virais , Genoma Viral , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais/genética
5.
Genome Res ; 31(11): 2058-2068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34667116

RESUMO

Defense against genome invaders universally relies on RNA-guided immunity. Prokaryotic CRISPR-Cas and eukaryotic RNA interference pathways recognize targets by complementary base-pairing, which places the sequences of their guide RNAs at the center of self/nonself discrimination. Here, we explore the sequence space of PIWI-interacting RNAs (piRNAs), the genome defense of animals, and establish functional priority among individual sequences. Our results reveal that only the topmost abundant piRNAs are commonly present in every cell, whereas rare sequences generate cell-to-cell diversity in flies and mice. We identify a skewed distribution of sequence abundance as a hallmark of piRNA populations and show that quantitative differences of more than a 1000-fold are established by conserved mechanisms of biogenesis. Finally, our genomics analyses and direct reporter assays reveal that abundance determines function in piRNA-guided genome defense. Taken together, we identify an effective sequence space and untangle two classes of piRNAs that differ in complexity and function. The first class represents the topmost abundant sequences and drives silencing of genomic parasites. The second class sparsely covers an enormous sequence space. These rare piRNAs cannot function in every cell, every individual, or every generation but create diversity with potential for adaptation in the ongoing arms race with genome invaders.


Assuntos
RNA Guia de Cinetoplastídeos , Animais , Camundongos , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
PLoS One ; 14(6): e0217625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188853

RESUMO

An RNA switch triggers biological functions by toggling between two conformations. RNA switches include bacterial riboswitches, where ligand binding can stabilize a bound structure. For RNAs with only one stable structure, structural prediction usually just requires a straightforward free energy minimization, but for an RNA switch, the prediction of a less stable alternative structure is often computationally costly and even problematic. The current sampling-clustering method predicts stable and alternative structures by partitioning structures sampled from the energy landscape into two clusters, but it is very time-consuming. Instead, we predict the alternative structure of an RNA switch from conditional probability calculations within the energy landscape. First, our method excludes base pairs related to the most stable structure in the energy landscape. Then, it detects stable stems ("seeds") in the remaining landscape. Finally, it folds an alternative structure prediction around a seed. While having comparable riboswitch classification performance, the conditional-probability computations had fewer adjustable parameters, offered greater predictive flexibility, and were more than one thousand times faster than the sampling step alone in sampling-clustering predictions, the competing standard. Overall, the described approach helps traverse thermodynamically improbable energy landscapes to find biologically significant substructures and structures rapidly and effectively.


Assuntos
Algoritmos , Modelos Estatísticos , Conformação de Ácido Nucleico , Riboswitch , Pareamento de Bases , Sequência de Bases , Simulação por Computador , Estabilidade de RNA , Termodinâmica
7.
PLoS One ; 11(9): e0163688, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27685447

RESUMO

Because of a high mutation rate, HIV exists as a viral swarm of many sequence variants evolving under various selective pressures from the human immune system. Although the Nef gene codes for the most immunogenic of HIV accessory proteins, which alone makes it of great interest to HIV research, it also encodes an RNA structure, whose contribution to HIV virulence has been largely unexplored. Nef RNA helps HIV escape RNA interference (RNAi) through nucleotide changes and alternative folding. This study examines Historic and Modern Datasets of patient HIV-1 Nef sequences during the evolution of the North American epidemic for local changes in RNA plasticity. By definition, RNA plasticity refers to an RNA molecule's ability to take alternative folds (i.e., alternative conformations). Our most important finding is that an evolutionarily conserved region of the HIV-1 Nef gene, which we denote by R2, recently underwent a statistically significant increase in its RNA plasticity. Thus, our results indicate that Modern Nef R2 typically accommodates an alternative fold more readily than Historic Nef R2. Moreover, the increase in RNA plasticity resides mostly in synonymous nucleotide changes, which cannot be a response to selective pressures on the Nef protein. R2 may therefore be of interest in the development of antiviral RNAi therapies.

8.
BMC Bioinformatics ; 16: 133, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25928324

RESUMO

BACKGROUND: RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. RESULTS: We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. CONCLUSIONS: Various tests show that there is in fact a relationship between higher structural entropy and the potential for the RNA sequence to have alternative structures, within the limitations of our methodology. This relationship, though modest, is consistent across various tests. Understanding the behavior of structural entropy as a fairly new feature for RNA conformational dynamics, however, may require extensive exploratory investigation both across RNA sequences and folding models.


Assuntos
Biologia Computacional/métodos , Entropia , Conformação de Ácido Nucleico , RNA Bacteriano/química , Ribossomos/metabolismo , Riboswitch/genética , Software , Bacillus subtilis/genética , Pareamento de Bases , Sequência de Bases , Sítios de Ligação/genética , Escherichia coli/genética , Dados de Sequência Molecular , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Sequências Reguladoras de Ácido Nucleico , Ribossomos/química , Synechococcus/genética
9.
J Theor Biol ; 318: 140-63, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23160142

RESUMO

UNLABELLED: RNA secondary structure ensembles define probability distributions for alternative equilibrium secondary structures of an RNA sequence. Shannon's entropy is a measure for the amount of diversity present in any ensemble. In this work, Shannon's entropy of the SCFG ensemble on an RNA sequence is derived and implemented in polynomial time for both structurally ambiguous and unambiguous grammars. Micro RNA sequences generally have low folding entropy, as previously discovered. Surprisingly, signs of significantly high folding entropy were observed in certain ncRNA families. More effective models coupled with targeted randomization tests can lead to a better insight into folding features of these families. AVAILABILITY: URL http://www.plantbio.uga.edu/~russell/index.php?s=1&n=5&r=0.


Assuntos
Modelos Genéticos , RNA não Traduzido/genética , Algoritmos , Animais , Sequência de Bases , Entropia , MicroRNAs/genética , Estrutura Secundária de Proteína/genética , Dobramento de RNA/genética , Riboswitch/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...