Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Sci Rep ; 14(1): 15292, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961134

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. In a longitudinal study, disability status and associated clinical features in 58 MS patients were tracked over 4.2 ± 0.98 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 41 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia, Lachnospiraceae, and Oscillospiraceae, with an expansion of Alloprevotella, Prevotella-9, and Rhodospirillales. Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K2 production (linked to Akkermansia), and a depletion in SCFA metabolism (linked to Oscillospiraceae). Further, as a proof of principle, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. These results demonstrate a proof of principle for the utility of the gut microbiome for predicting disease progression in MS in a small well-defined cohort. Further, analysis of the inferred metagenome suggested that oxidative stress, vitamin K2, and SCFAs are associated with progression, warranting future functional validation and mechanistic study.


Assuntos
Progressão da Doença , Microbioma Gastrointestinal , Esclerose Múltipla , Humanos , Microbioma Gastrointestinal/genética , Esclerose Múltipla/microbiologia , Esclerose Múltipla/patologia , Masculino , Feminino , Adulto , Estudos Longitudinais , Fezes/microbiologia , Pessoa de Meia-Idade , Índice de Gravidade de Doença , RNA Ribossômico 16S/genética
2.
Int Urogynecol J ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942931

RESUMO

INTRODUCTION AND HYPOTHESIS: The objective was to examine the outcomes of posterior tibial nerve stimulation (PTNS) on bladder, bowel, and sexual health-related quality of life among a cohort of patients with multiple sclerosis (MS) with refractory lower urinary tract symptoms (LUTS). METHODS: Patients with MS and refractory LUTS were recruited for a prospective, observational study using PTNS to treat their symptoms. Patients underwent 12 weekly 30-min PTNS sessions and bladder, bowel, and sexual symptoms were evaluated at baseline, 3, 12, and 24 months with voiding diaries, visual analog scales (VAS), and validated patient-reported questionnaires, including the American Urological Association Symptom Score (AUA-SS), Neurogenic Bladder Symptom Score (NBSS), Michigan Incontinence Symptom Index (M-ISI), Health Status Questionnaire, Sexual Satisfaction Scale, and Bowel Control Scale. RESULTS: A total of 23 patients were recruited: 18 started PTNS and 14 completed 3 months of PTNS. Of the 18 who started PTNS, the mean age was 52 years (SD 12), 61% were female, 83% were white, and most patients had relapsing remitting (39%) MS. Baseline (n=18) and 3-month voiding (n=11) outcomes showed no significant change in number of voids or incontinence episodes. The median VAS symptom improvement was 49 (IQR 26.5, 26) and 9 (53%) patients elected for monthly maintenance PTNS. On paired analysis, there was a significant improvement in median change in NBSS, AUA-SS, and M-ISI. There was no significant change in bowel or sexual dysfunction. CONCLUSIONS: This prospective, observational study of PTNS in patients with MS with refractory LUTS shows improvement in patient-reported bladder outcomes, but not in number of voids per day or bowel or bladder function.

3.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200268, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885457

RESUMO

BACKGROUND AND OBJECTIVES: AQP4 antibody-positive NMOSD (AQP4-NMOSD), MOG antibody-associated disease (MOGAD), and seronegative NMOSD (SN-NMOSD) are neuroautoimmune conditions that have overlapping clinical manifestations. Yet, important differences exist in these diseases, particularly in B-cell depletion (BCD) efficacy. Yet, the biology driving these differences remains unclear. Our study aims to clarify biological pathways distinguishing these diseases beyond autoantibodies and investigate variable BCD effects through proteomic comparisons. METHODS: In a retrospective study, 1,463 serum proteins were measured in 53 AQP4-NMOSD, 25 MOGAD, 18 SN-NMOSD, and 49 healthy individuals. To identify disease subtype-associated signatures, we examined serum proteins in patients without anti-CD20 B-cell depletion (NoBCD). We then assessed the effect of BCD treatment within each subtype by comparing proteins between BCD-treated and NoBCD-treated patients. RESULTS: In NoBCD-treated patients, serum profiles distinguished the 3 diseases. AQP4-NMOSD showed elevated type I interferon-induced chemokines (CXCL9 and CXCL10) and TFH chemokine (CXCL13). MOGAD exhibited increased cytotoxic T-cell proteases (granzyme B and granzyme H), while SN-NMOSD displayed elevated Wnt inhibitory factor 1, a marker for nerve injury. Across all subtypes, BCD-treated patients showed reduction of B-cell-associated proteins. In AQP4-NMOSD, BCD led to a decrease in several inflammatory pathways, including IL-17 signaling, cytokine storm, and macrophage activation. By contrast, BCD elevated these pathways in patients with MOGAD. BCD had no effect on these pathways in SN-NMOSD. DISCUSSION: Proteomic profiles show unique biological pathways that distinguish AQP4-NMOSD, MOGAD, or SN-NMOSD. Furthermore, BCD uniquely affects inflammatory pathways in each disease type, providing an explanation for the disparate therapeutic response in AQP4-NMOSD and MOGAD.


Assuntos
Linfócitos B , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica , Proteômica , Humanos , Neuromielite Óptica/sangue , Neuromielite Óptica/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Estudos Retrospectivos , Linfócitos B/imunologia , Aquaporina 4/imunologia , Autoanticorpos/sangue , Idoso
4.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473703

RESUMO

Multiple sclerosis (MS) is the most common autoimmune demyelinating disease of the central nervous system (CNS), consisting of heterogeneous clinical courses varying from relapsing-remitting MS (RRMS), in which disability is linked to bouts of inflammation, to progressive disease such as primary progressive MS (PPMS) and secondary progressive MS (SPMS), in which neurological disability is thought to be linked to neurodegeneration. As a result, successful therapeutics for progressive MS likely need to have both anti-inflammatory and direct neuroprotective properties. The modulation of sphingosine-1-phosphate (S1P) receptors has been implicated in neuroprotection in preclinical animal models. Siponimod/BAF312, the first oral treatment approved for SPMS, may have direct neuroprotective benefits mediated by its activity as a selective (S1P receptor 1) S1P1 and (S1P receptor 5) S1P5 modulator. We showed that S1P1 was mainly present in cortical neurons in lesioned areas of the MS brain. To gain a better understanding of the neuroprotective effects of siponimod in MS, we used both rat neurons and human-induced pluripotent stem cell (iPSC)-derived neurons treated with the neuroinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Cell survival/apoptotic assays using flow cytometry and IncuCyte live cell analyses showed that siponimod decreased TNF-α induced neuronal cell apoptosis in both rat and human iPSCs. Importantly, a transcriptomic analysis revealed that mitochondrial oxidative phosphorylation, NFκB and cytokine signaling pathways contributed to siponimod's neuroprotective effects. Our data suggest that the neuroprotection of siponimod/BAF312 likely involves the relief of oxidative stress in neuronal cells. Further studies are needed to explore the molecular mechanisms of such interactions to determine the relationship between mitochondrial dysfunction and neuroinflammation/neurodegeneration.


Assuntos
Azetidinas , Compostos de Benzil , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Fármacos Neuroprotetores , Humanos , Animais , Ratos , Receptores de Esfingosina-1-Fosfato , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fator de Necrose Tumoral alfa/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Morte Celular
5.
N Engl J Med ; 390(7): 589-600, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354138

RESUMO

BACKGROUND: The CD40-CD40L costimulatory pathway regulates adaptive and innate immune responses and has been implicated in the pathogenesis of multiple sclerosis. Frexalimab is a second-generation anti-CD40L monoclonal antibody being evaluated for the treatment of multiple sclerosis. METHODS: In this phase 2, double-blind, randomized trial, we assigned, in a 4:4:1:1 ratio, participants with relapsing multiple sclerosis to receive 1200 mg of frexalimab administered intravenously every 4 weeks (with an 1800-mg loading dose), 300 mg of frexalimab administered subcutaneously every 2 weeks (with a 600-mg loading dose), or the matching placebos for each active treatment. The primary end point was the number of new gadolinium-enhancing T1-weighted lesions seen on magnetic resonance imaging at week 12 relative to week 8. Secondary end points included the number of new or enlarging T2-weighted lesions at week 12 relative to week 8, the total number of gadolinium-enhancing T1-weighted lesions at week 12, and safety. After 12 weeks, all the participants could receive open-label frexalimab. RESULTS: Of 166 participants screened, 129 were assigned to a trial group; 125 participants (97%) completed the 12-week double-blind period. The mean age of the participants was 36.6 years, 66% were women, and 30% had gadolinium-enhancing lesions at baseline. At week 12, the adjusted mean number of new gadolinium-enhancing T1-weighted lesions was 0.2 (95% confidence interval [CI], 0.1 to 0.4) in the group that received 1200 mg of frexalimab intravenously and 0.3 (95% CI, 0.1 to 0.6) in the group that received 300 mg of frexalimab subcutaneously, as compared with 1.4 (95% CI, 0.6 to 3.0) in the pooled placebo group. The rate ratios as compared with placebo were 0.11 (95% CI, 0.03 to 0.38) in the 1200-mg group and 0.21 (95% CI, 0.08 to 0.56) in the 300-mg group. Results for the secondary imaging end points were generally in the same direction as those for the primary analysis. The most common adverse events were coronavirus disease 2019 and headaches. CONCLUSIONS: In a phase 2 trial involving participants with multiple sclerosis, inhibition of CD40L with frexalimab had an effect that generally favored a greater reduction in the number of new gadolinium-enhancing T1-weighted lesions at week 12 as compared with placebo. Larger and longer trials are needed to determine the long-term efficacy and safety of frexalimab in persons with multiple sclerosis. (Funded by Sanofi; ClinicalTrials.gov number, NCT04879628.).


Assuntos
Anticorpos Monoclonais , Antígenos CD40 , Ligante de CD40 , Esclerose Múltipla Recidivante-Remitente , Adulto , Feminino , Humanos , Masculino , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/imunologia , Método Duplo-Cego , Gadolínio , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/imunologia , Administração Intravenosa , Injeções Subcutâneas
6.
Seizure ; 115: 44-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183827

RESUMO

PURPOSE: The prevalence of epilepsy in patients with multiple sclerosis (MS) is three to six times the prevalence in the general population. Mechanisms resulting in increased seizure risk are not fully understood. Our objective is to characterize patients with MS and epilepsy regarding timing of diagnoses, MS and seizure (SZ) type, EEG findings suggesting cortical dysfunction, frequency of status epilepticus (SE), and seizure freedom. METHODS: This was a single center retrospective study. Cases were obtained via DataDirect via the University of Michigan electronic medical record from January 1, 2006 through October, 12, 2016. The University of Michigan Health System is a large academic institute with a tertiary referral center and an Autoimmunity Center of Excellence. Patients were included if chart listed one or more of the top 62 epilepsy, and one or more of the top 2 MS, most frequently entered ICD9 and ICD10 codes. Patients with alternative epilepsy etiology were excluded. 74 of 361 patients were included. We collected information regarding demographics, MS and SZ type, age at diagnosis, imaging, EEG, seizure freedom, medications, and SE. RESULTS: We found a high percentage of patients with SE. Most patients with imaging had multiple lesions at seizure onset. 27/54 of patients with EEG data showed electrographic evidence of cortical dysfunction. 6/8 of EEGs in PPMS showed features consistent with cortical dysfunction, followed by 9/17 in SPMS and 11/23 in RRMS. 7/8 of patients with PPMS showed EEG evidence of temporal lobe dysfunction. CONCLUSION: Time of seizure onset relative to MS diagnosis varied with MS type suggesting distinct pathophysiology. EEG results correspond with reports of increased cortical damage and temporal dysfunction in PPMS, but are unique as a functional modality (EEG) as indicator of gray matter dysfunction. EEG findings differed in RRMS and progressive MS suggesting possibility of supportive diagnostic marker. Our data suggests higher risk of SE in progressive MS and diminished rate of seizure freedom for MS patients with SE. We conclude that early treatment with antiseizure medication would be beneficial for MS patients with SE and with progressive MS forms and SZ, in agreement with previous studies.


Assuntos
Epilepsia , Esclerose Múltipla , Estado Epiléptico , Humanos , Estudos Retrospectivos , Esclerose Múltipla/complicações , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/diagnóstico , Autoimunidade , Convulsões/diagnóstico , Epilepsia/epidemiologia , Estado Epiléptico/complicações , Eletroencefalografia/efeitos adversos
7.
Cancer Immunol Immunother ; 73(2): 34, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280067

RESUMO

Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell-cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft mouse models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8 + T cells. In particular, tumor-infiltrating cytotoxic lymphocytes from UMCD6-treated mice expressed higher levels of perforin and were found in higher proportions than those from IgG-treated mice. Moreover, RNA-seq analysis of human NK-92 cells treated with UMCD6 revealed that UMCD6 up-regulates the NKG2D-DAP10 receptor complex, important in NK cell activation, as well as its downstream target PI3K. Our results now describe the phenotypic changes that occur on immune cells upon treatment with UMCD6 and further confirm that the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Antígenos CD , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Neoplasias , Moléculas de Adesão Celular , Linfócitos/metabolismo , Microambiente Tumoral
8.
Front Aging ; 4: 1234572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900152

RESUMO

Aging is associated with a progressive decline of innate and adaptive immune responses, called immunosenescence. This phenomenon links to different multiple sclerosis (MS) disease courses among different age groups. While clinical relapse and active demyelination are mainly related to the altered adaptive immunity, including invasion of T- and B-lymphocytes, impairment of innate immune cell (e.g., microglia, astrocyte) function is the main contributor to disability progression and neurodegeneration. Most patients with MS manifest the relapsing-remitting phenotype at a younger age, while progressive phenotypes are mainly seen in older patients. Current disease-modifying therapies (DMTs) primarily targeting adaptive immunity are less efficacious in older patients, suggesting that immunosenescence plays a role in treatment response. This review summarizes the recent immune mechanistic studies regarding immunosenescence in patients with MS and discusses the clinical implications of these findings.

9.
Mult Scler Relat Disord ; 79: 105020, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806231

RESUMO

BACKGROUND: Though most patients with multiple sclerosis (MS) presented earlier on as a relapsing-remitting (RR) disease, disability progression eventually occurred. Uncovering the mechanisms underlying progression may facilitate the unmet need for developing therapies to prevent progression. Benign MS (BMS), a rare form of MS, is the opposite from secondary progressive MS (SPMS) in that it lacks disease progression defined as Expanded Disability Status Scale (EDSS) ≤3 after at least 15 years of disease onset. BMS is characterized by rare and mild relapses with complete remission of clinical symptoms (lower activity of the disease) and lack of progression. Our study aims to identify transcriptomic and immunological differences between BMS and SPMS to unravel the pathogenesis of disease progression. METHODS: We took multi-modal approaches with microarrays, flow cytometry, and lipidomics by three-way comparisons of patients with BMS vs. RRMS (low disease activity vs. moderate or severe activity), RRMS vs. SPMS (continued activity vs. complete transformation into progressive phase) as well as BMS vs. SPMS, matched for age and disease-duration (low disease activity and no progression vs. progression with or without activity). RESULTS: We found that patients with RRMS and SPMS have a significantly higher percentage of B cells than those with BMS. BMS shows a different transcriptomic profile than SPMS. Many of the differentially expressed genes (DEGs) are involved in B cell-mediated immune responses. Additionally, long-chain fatty acids (LCFA), which can act as inflammatory mediators, are also altered in SPMS. Overall, our data suggest a role for the dysregulation of B cell differentiation and function, humoral immunity, and iron and lipid homeostasis in the pathogenesis of MS disease progression. CONCLUSION: BMS has a unique transcriptomic and immunological profile compared to RRMS and SPMS. These differences will allow for personalized precision medicine and may ultimately lead to the discovery of new therapeutic targets for disease progression.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Imunidade Humoral , Metabolismo dos Lipídeos , Progressão da Doença , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Homeostase
10.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886483

RESUMO

Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell-cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8+ T cells. Tumor-infiltrating cytotoxic lymphocytes were found in higher proportions and were activated in UMCD6-treated mice compared to controls. Similar changes in gene expression were observed by RNA-seq analysis of NK cells treated with UMCD6. Particularly, UMCD6 up-regulated the NKG2D-DAP10 complex and activated PI3K. Thus, the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.

11.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808700

RESUMO

Multiple sclerosis (MS) is the most common inflammatory neurodegenerative disease in young adults, resulting in neurological defects and disability. The endogenous mechanisms to resolve inflammation are intact but become defective in patients, resulting in lack of resolution mediators and unresolved chronic inflammation. Docosahexaenoic acid (DHA) metabolism being impaired in MS, we hypothesize that supplementing its downstream metabolite maresin 1 (MaR1) will alleviate inflammation and demyelination in preclinical mouse model of MS; experimental allergic encephalomyelitis (EAE). Restoration of MaR1 by its exogenous administration in EAE mice propagated inflammatory resolution and had a protective effect on neurological deficits, prevented disease progression, and reduced disease severity by reducing immune cell infiltration (CD4+IL17+ and CD4+IFN-γ+) into the CNS. It significantly reduced the proinflammatory cytokine IL17 and promoted an anti-inflammatory response via IL10 and IL4. Neutralization of IL10 abolished the protective effect of MaR1 in EAE confirming IL10 is mediating MaR1 effect in EAE. Furthermore, it improved the pathophysiology and exerted neuroprotective effects by mitigating disease signs in EAE as evidenced by lower levels of NFL in the plasma of treated group compared to control and higher MBP expression in the brain from the MaR1 treated mice, decreased inflammatory infiltrates, and less demyelination and vacuolization in the spinal cord tissue sections of treated mice. SCENITH data confirmed that MaR1 maintains myelin by regulating oligodendrocyte metabolism. Also, it induces metabolic reprogramming in infiltrating CD4 cells and macrophages, which modulate their phenotype. Metabolic changes induced macrophages by MaR1 restores the impaired efferocytosis in EAE, promoting clearance of damaged myelin and dead cells; thereby lowering the disability with disease course. Overall, MaR1 supplementation has anti-inflammatory and neuroprotective effects in preclinical animal models and induces metabolic reprogramming in disease associated cell-types, promotes efferocytosis, implying that it could be a new therapeutic molecule in MS and other autoimmune diseases. Highlights: Inflammation is dysregulated in EAE due to impaired synthesis of DHA derived proresolving lipid mediator MaR1.Administration of the resolution agonist MaR1 propagates resolution processes and improves neurological outcome in RR model of EAE.MaR1 ameliorates clinical signs of EAE by attenuating pro-inflammatory cytokine IL17 mediated response and promoting anti-inflammatory response through IL10.MaR1 supplementation improves the pathophysiology in EAE and shows neuroprotection as indicated by the lower levels of NFL in the plasma and higher expression of MBP in the brain of treated mice.MaR1 induces metabolic reprogramming in disease-associated cell types.MaR1 promotes efferocytosis in EAE through metabolic reprogramming of macrophages. Significance: Inflammatory process is a protective response to several challenges like injury or infection. However, it must resolve over time to maintain tissue homeostasis. Impaired or delayed resolution leads to damaging effects, including chronic inflammation, tissue damage, and disease progression as occurs in multiple sclerosis (MS). We report that inflammation is dysregulated in preclinical animal model of MS, experimental autoimmune encephalomyelitis (EAE), partially due to impaired synthesis of proresolving lipid mediators. We show that the administration of the resolution agonist known as maresin 1 (MaR1) in EAE actively propagates resolution processes and improves neurological outcome. We conclude that MaR1 is a potential interventional candidate to attenuate dysregulated inflammation and to restore neurological deficits in EAE.

12.
medRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425956

RESUMO

Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. Methods: In a longitudinal study, disability status and associated clinical features in 60 MS patients were tracked over 4.2 ± 0.97 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. Results: We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 45 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia , Lachnospiraceae, and Oscillospiraceae , with an expansion of Alloprevotella , Prevotella-9 , and Rhodospirillales . Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed a significant enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K 2 production (linked to Akkermansia ), and a depletion in SCFA metabolism (linked to Lachnospiraceae and Oscillospiraceae ). Further, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to robustly predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. Conclusions: These results demonstrate the utility of the gut microbiome for predicting disease progression in MS. Further, analysis of the inferred metagenome revealed that oxidative stress, vitamin K 2 and SCFAs are associated with progression.

13.
J Neuroimmunol ; 382: 578143, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467700

RESUMO

We describe clinical characteristics and deep immunophenotypes in two patients with myelin-oligodendrocyte-glycoprotein (MOG)-antibody-associated-disease after COVID-19. The para-COVID case was a 74-year-old man who developed optic neuritis two days after COVID-19. Immunological assays revealed reduced absolute CD8+ T- and B-cell counts with increased frequency of NK cells. Post-COVID case was a 63-year-old man with optic neuritis six months after COVID-19, a frequency of CD8+ T-cells was elevated with a relatively low fraction of naïve and a high fraction of effector memory CD8+ T-cells. There was increased frequency of CD8+CD38+HLA-DR+ T-cells in the para-COVID case; interestingly, CD4+CD38+HLA-DR+ T cell frequency was increased in the post-COVID case. Both had increased SARS-CoV-2-specific and MOG-specific T-cell responses.


Assuntos
COVID-19 , Glicoproteína Mielina-Oligodendrócito , Neurite Óptica , Humanos , Autoanticorpos , Linfócitos T CD8-Positivos/imunologia , COVID-19/complicações , COVID-19/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Neurite Óptica/etiologia , Neurite Óptica/imunologia , SARS-CoV-2 , Masculino , Pessoa de Meia-Idade , Idoso
14.
Mult Scler Relat Disord ; 75: 104719, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172367

RESUMO

BACKGROUND: Teriflunomide (TER) (Aubagio™) is an FDA-approved disease-modifying therapy (DMT) for relapsing-remitting multiple sclerosis (RRMS). The mechanism of action of TER is thought to be related to the inhibition of dihydroorotate dehydrogenase (DHODH), a key mitochondrial enzyme in the de novo pyrimidine synthesis pathway required by rapidly dividing lymphocytes. Several large pivotal studies have established the efficacy and safety of TER in patients with RRMS. Despite this, little is known about how the adaptive and innate immune cell subsets are affected by the treatment in patients with MS. METHODS: We recruited 20 patients with RRMS who were newly started on TER and performed multicolor flow cytometry and functional assays on peripheral blood samples. A paired t-test was used for the statistical analysis and comparison. RESULTS: Our data showed that TER promoted a tolerogenic environment by shifting the balance between activated pathogenic and naïve or immunosuppressive immune cell subsets. In our cohort, TER increased the expression of the immunosuppressive marker CD39 on regulatory T cells (Tregs) while it decreased the expression of the activation marker CXCR3 on CD4+ T helper cells. TER treatment also reduced switched memory (sm) B cells while it increased naïve B cells and downregulated the expression of co-stimulatory molecules CD80 and CD86. Additionally, TER reduced the percentage and absolute numbers of natural killer T (NKT) cells, as well as the percentage of natural killer (NK) cells and showed a trend toward reducing the CD56dim NK pathogenic subset. CONCLUSION: TER promotes the tolerogenic immune response and suppresses the pathogenic immune response in patients with RRMS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Imunossupressores/efeitos adversos , Nitrilas
15.
Neurol Ther ; 12(3): 883-897, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37061656

RESUMO

INTRODUCTION: Dimethyl fumarate (DMF) showed favorable benefit-risk in patients with relapsing-remitting multiple sclerosis (MS) in phase 3 DEFINE and CONFIRM trials and in the ENDORSE extension study. Disease activity can differ in younger patients with MS compared with the overall population. METHODS: Randomized patients received DMF 240 mg twice daily or placebo (PBO; years 0-2 DEFINE/CONFIRM), then DMF (years 3-10; continuous DMF/DMF or PBO/DMF; ENDORSE); maximum follow-up (combined studies) was 13 years. This integrated post hoc analysis evaluated safety and efficacy of DMF in a subgroup of young adults aged 18-29 years. RESULTS: Of 1736 patients enrolled in ENDORSE, 125 were young adults, 86 treated continuously with DMF (DMF/DMF) and 39 received delayed DMF (PBO/DMF) in DEFINE/CONFIRM. Most (n = 116 [93%]) young adults completed DMF treatment in DEFINE/CONFIRM. Median (range) follow-up time in ENDORSE was 6.5 (2.0-10.0) years. Young adults entering ENDORSE who had been treated with DMF in DEFINE/CONFIRM had a model-based Annualized Relapse Rate (ARR; 95% CI) of 0.24 (0.16-0.35) vs. 0.56 (0.35-0.88) in PBO patients. ARR remained low in ENDORSE: 0.07 (0.01-0.47) at years 9-10 (DMF/DMF group). At year 10 of ENDORSE, EDSS scores were low in young adults: DMF/DMF, 1.9 (1.4); PBO/DMF, 2.4 (1.6). At ~ 7 years, the proportion of young adults with no confirmed disability progresion was 81% for DMF/DMF and 72% for PBO/DMF. Patient-reported outcomes (PROs) (SF-36 and EQ-5D) generally remained stable during ENDORSE. The most common adverse events (AEs) in young adults during ENDORSE were MS relapse (n = 53 [42%]). Most AEs were mild (n = 20 [23.3%], n = 7 [17.9%]) to moderate (n = 45 [52.3%], n = 23 [59.0%]) in the DMF/DMF and PBO/DMF groups, respectively. The most common serious AE (SAE) was MS relapse (n = 19 [15%]). CONCLUSION: The data support a favorable benefit-risk profile of DMF in young adults, as evidenced by well-characterized safety, sustained efficacy, and stable PROs. CLINICAL TRIAL INFORMATION: Clinical trials.gov, DEFINE (NCT00420212), CONFIRM (NCT00451451), and ENDORSE (NCT00835770).

16.
JAMA Neurol ; 80(6): 624-633, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093609

RESUMO

Importance: Progressive multifocal leukoencephalopathy can occur in the context of systemic sarcoidosis (S-PML) in the absence of therapeutic immune suppression and can initially be mistaken for neurosarcoidosis or other complications of sarcoidosis. Earlier recognition of S-PML could lead to more effective treatment of the disease. Objective: To describe characteristics of patients with S-PML. Design, Setting, and Participants: For this case series, records from 8 academic medical centers in the United States were reviewed from 2004 to 2022. A systematic review of literature from 1955 to 2022 yielded data for additional patients. Included were patients with S-PML who were not receiving therapeutic immune suppression. The median follow-up time for patients who survived the acute range of illness was 19 months (range, 2-99). Data were analyzed in February 2023. Exposures: Sarcoidosis without active therapeutic immune suppression. Main Outcomes and Measures: Clinical, laboratory, and radiographic features of patients with S-PML. Results: Twenty-one patients with S-PML not receiving therapeutic immune suppression were included in this study, and data for 37 patients were collected from literature review. The median age of the 21 study patients was 56 years (range, 33-72), 4 patients (19%) were female, and 17 (81%) were male. The median age of the literature review patients was 49 years (range, 21-74); 12 of 34 patients (33%) with reported sex were female, and 22 (67%) were male. Nine of 21 study patients (43%) and 18 of 31 literature review patients (58%) had simultaneous presentation of systemic sarcoidosis and PML. Six of 14 study patients (43%) and 11 of 19 literature review patients (58%) had a CD4+ T-cell count greater than 200/µL. In 2 study patients, a systemic flare of sarcoidosis closely preceded S-PML development. Ten of 17 study patients (59%) and 21 of 35 literature review patients (60%) died during the acute phase of illness. No meaningful predictive differences were found between patients who survived S-PML and those who did not. Conclusions and Relevance: In this case series, patients with sarcoidosis developed PML in the absence of therapeutic immune suppression, and peripheral blood proxies of immune function were often only mildly abnormal. Systemic sarcoidosis flares may rarely herald the onset of S-PML. Clinicians should consider PML in any patient with sarcoidosis and new white matter lesions on brain magnetic resonance imaging.


Assuntos
Leucoencefalopatia Multifocal Progressiva , Sarcoidose , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Encéfalo/patologia , Sarcoidose/complicações , Imageamento por Ressonância Magnética , Resultado do Tratamento
17.
J Neurol Neurosurg Psychiatry ; 94(7): 560-566, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36810323

RESUMO

BACKGROUND: The novel optic neuritis (ON) diagnostic criteria include intereye differences (IED) of optical coherence tomography (OCT) parameters. IED has proven valuable for ON diagnosis in multiple sclerosis but has not been evaluated in aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders (AQP4+NMOSD). We evaluated the diagnostic accuracy of intereye absolute (IEAD) and percentage difference (IEPD) in AQP4+NMOSD after unilateral ON >6 months before OCT as compared with healthy controls (HC). METHODS: Twenty-eight AQP4+NMOSD after unilateral ON (NMOSD-ON), 62 HC and 45 AQP4+NMOSD without ON history (NMOSD-NON) were recruited by 13 centres as part of the international Collaborative Retrospective Study on retinal OCT in Neuromyelitis Optica study. Mean thickness of peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell and inner plexiform layer (GCIPL) were quantified by Spectralis spectral domain OCT. Threshold values of the ON diagnostic criteria (pRNFL: IEAD 5 µm, IEPD 5%; GCIPL: IEAD: 4 µm, IEPD: 4%) were evaluated using receiver operating characteristics and area under the curve (AUC) metrics. RESULTS: The discriminative power was high for NMOSD-ON versus HC for IEAD (pRNFL: AUC 0.95, specificity 82%, sensitivity 86%; GCIPL: AUC 0.93, specificity 98%, sensitivity 75%) and IEPD (pRNFL: AUC 0.96, specificity 87%, sensitivity 89%; GCIPL: AUC 0.94, specificity 96%, sensitivity 82%). The discriminative power was high/moderate for NMOSD-ON versus NMOSD-NON for IEAD (pRNFL: AUC 0.92, specificity 77%, sensitivity 86%; GCIP: AUC 0.87, specificity 85%, sensitivity 75%) and for IEPD (pRNFL: AUC 0.94, specificity 82%, sensitivity 89%; GCIP: AUC 0.88, specificity 82%, sensitivity 82%). CONCLUSIONS: Results support the validation of the IED metrics as OCT parameters of the novel diagnostic ON criteria in AQP4+NMOSD.


Assuntos
Aquaporinas , Neuromielite Óptica , Neurite Óptica , Humanos , Neuromielite Óptica/diagnóstico , Estudos Retrospectivos , Benchmarking , Neurite Óptica/diagnóstico , Tomografia de Coerência Óptica/métodos , Autoanticorpos , Aquaporina 4
18.
Mult Scler J Exp Transl Clin ; 8(3): 20552173221115023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936922

RESUMO

Background: Fingolimod is a sphingosine 1-phosphate receptor modulator approved for relapsing MS. Long-term effects on the immunological profile are not fully understood. Objective: Investigate fingolimod's temporal effects on immune cell subsets, and safety outcomes. Methods: In FLUENT, a 12-month, prospective, non-randomized, open-label, phase IV study, adult participants received fingolimod 0.5 mg/day. Changes in immune cell subsets, anti-John Cunningham virus (JCV) antibody index, and serum neurofilament levels were assessed. Results: 165 fingolimod-naive and 217 participants treated for 2-12 years in routine clinical practice were enrolled. Levels of all monitored peripheral lymphocyte subsets were reduced from month 3 in fingolimod-naive participants. Greatest reductions occurred in naive and central memory CD4+ and CD8+ T cells, and in naive and memory B cells. Most lymphocyte subset levels remained stable in the continuous fingolimod group. Components of the innate immune system remained within reference ranges. No increase in JCV seropositivity was observed. No single cellular subset correlated with anti-JCV antibody index at any time point. Neurofilament levels remained within healthy adult reference limits throughout. No opportunistic infections were reported; no new or unexpected safety signals were observed. Conclusion: FLUENT provides insights into the utility of immunological profiling to evaluate therapy response and potential infection risk.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36041861

RESUMO

The classification of multiple sclerosis (MS) has been established by Lublin in 1996 and revised in 2013. The revision includes clinically isolated syndrome, relapsing-remitting, primary progressive and secondary progressive MS, and has added activity (i.e., formation of white matter lesions or clinical relapses) as a qualifier. This allows for the distinction between active and nonactive progression, which has been shown to be of clinical importance. We propose that a logical extension of this classification is the incorporation of additional key pathological processes, such as chronic perilesional inflammation, neuroaxonal degeneration, and remyelination. This will distinguish MS phenotypes that may present as clinically identical but are driven by different combinations of pathological processes. A more precise description of MS phenotypes will improve prognostication and personalized care as well as clinical trial design. Thus, our proposal provides an expanded framework for conceptualizing MS and for guiding development of biomarkers for monitoring activity along the main pathological axes in MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Doenças do Sistema Nervoso , Biomarcadores , Progressão da Doença , Humanos , Inflamação , Esclerose Múltipla/diagnóstico , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/patologia
20.
Cell Metab ; 34(8): 1088-1103.e6, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35921817

RESUMO

The molecular interactions that regulate chronic inflammation underlying metabolic disease remain largely unknown. Since the CD24-Siglec interaction regulates inflammatory response to danger-associated molecular patterns (DAMPs), we have generated multiple mouse strains with single or combined mutations of Cd24 or Siglec genes to explore the role of the CD24-Siglec interaction in metaflammation and metabolic disorder. Here, we report that the CD24-Siglec-E axis, but not other Siglecs, is a key suppressor of obesity-related metabolic dysfunction. Inactivation of the CD24-Siglec-E pathway exacerbates, while CD24Fc treatment alleviates, diet-induced metabolic disorders, including obesity, dyslipidemia, insulin resistance, and nonalcoholic steatohepatitis (NASH). Mechanistically, sialylation-dependent recognition of CD24 by Siglec-E induces SHP-1 recruitment and represses metaflammation to protect against metabolic syndrome. A first-in-human study of CD24Fc (NCT02650895) supports the significance of this pathway in human lipid metabolism and inflammation. These findings identify the CD24-Siglec-E axis as an innate immune checkpoint against metaflammation and metabolic disorder and suggest a promising therapeutic target for metabolic disease.


Assuntos
Doenças Metabólicas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Antígeno CD24/genética , Antígeno CD24/metabolismo , Estudos Clínicos como Assunto , Humanos , Inflamação , Camundongos , Obesidade , Fagocitose , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...