Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(5): e202300647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38217401

RESUMO

Herein, we report the development of a macromolecular multifunctional imaging tool for biological investigations, which is comprised of an N-(2-hydroxypropyl)methacrylamide backbone, iridium-based luminescent probe, glutamate carboxypeptidase II (GCPII) targeting ligand, and biotin affinity tag. The iridium luminophore is a tris-cyclometalated complex based on [Ir(ppy)3] with one of its 2-phenylpyridine ligands functionalized to allow conjugation. Synthesized macromolecular probes differed in the structure of the polymer and content of the iridium complex. The applicability of the developed imaging tools has been tested in flow cytometry (FACS) based assay, laser confocal microscopy, and fluorescence lifetime imaging microscopy (FLIM). The FACS analysis has shown that the targeted iBodies containing the iridium luminophore exhibit selective labelling of GCPII expressing cells. This observation was also confirmed in the imaging experiments with laser confocal microscopy. The FLIM experiment has shown that the iBodies with the iridium label exhibit a lifetime greater than 100 ns, which distinguishes them from typically used systems labelled with organic fluorophores exhibiting short fluorescence lifetimes. The results of this investigation indicate that the system exhibits interesting properties, which supports the development of additional biological tools utilizing the key components (iridium complexes, iBody concept), primarily focusing on the longer lifetime of the iridium emitter.


Assuntos
Irídio , Microscopia Confocal , Polímeros , Irídio/química , Humanos , Polímeros/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Citometria de Fluxo , Imagem Óptica/métodos
2.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958638

RESUMO

Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner. However, the inhibition differed markedly between TCDD, BaP, and FICZ, with the latter being significantly less inhibited. The dose-response analysis confirmed an allosteric type of AhR antagonism. Furthermore, jasmone efficiently inhibited AhR activation by AhR agonists and microbial catabolites of tryptophan (MICTs). TCDD- and FICZ-inducible CYP1A1 expression in primary human hepatocytes was inhibited by jasmone, whereas in the human HepG2 and LS180 cells, jasmone antagonized only TCDD-activated AhR. Jasmone only partially displaced radiolabeled TCDD from its binding to mouse Ahr, suggesting it is not a typical orthosteric ligand of AhR. TCDD-elicited AhR nuclear translocation was not affected by jasmone, whereas downstream signaling events, including the formation of the AhR:ARNT complex and enrichment of the CYP1A1 promoter, were inhibited by jasmone. In conclusion, we show that jasmone is a potent allosteric antagonist of AhR. Such discovery may help to find and/or clarify the use of jasmone in pharmaco- and phytotherapy for conditions where AhR plays a key role.


Assuntos
Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Camundongos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligantes , Dibenzodioxinas Policloradas/efeitos adversos , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores
3.
Toxicol Lett ; 334: 87-93, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002526

RESUMO

The interplays between the metabolic products of intestinal microbiota and the host signaling through xenobiotic receptors, including pregnane X receptor (PXR), are of growing interest, in the context of intestinal health and disease. A distinct class of microbial catabolites is formed from dietary tryptophan, having the indole scaffold in their core structure, which is a biologically active entity. In the current study, we examined a series of ten tryptophan microbial catabolites for their interactions with PXR signaling. Utilizing a reporter gene assay, we identified indole (IND) and indole-3-acetamide (IAD) as PXR agonists. IND and IAD induced PXR-regulated genes CYP3A4 and MDR1 in human intestinal cancer cells. Using time-resolved fluorescence resonance energy transfer, we show that IND (IC50 292 µM) and IAD (IC50 10 µM) are orthosteric ligands of PXR. Binding of PXR in its DNA response elements was enhanced by IND and IAD, as revealed by chromatin immunoprecipitation assay. We demonstrate that tryptophan microbial intestinal metabolites IND and IAD are ligands and agonists of human PXR. These findings are of particular importance in understanding the roles of microbial catabolites in human physiology and pathophysiology. Furthermore, these results are seminal in expanding potential drug repertoire through microbial metabolic mimicry.


Assuntos
Microbioma Gastrointestinal , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Mucosa Intestinal , Receptor de Pregnano X/agonistas , Triptofano/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Genes Reporter , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Ligantes , Masculino , Receptor de Pregnano X/genética , Ligação Proteica , Transfecção
4.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283770

RESUMO

We examined the effects of gut microbial catabolites of tryptophan on the aryl hydrocarbon receptor (AhR). Using a reporter gene assay, we show that all studied catabolites are low-potency agonists of human AhR. The efficacy of catabolites differed substantially, comprising agonists with no or low (i3-propionate, i3-acetate, i3-lactate, i3-aldehyde), medium (i3-ethanol, i3-acrylate, skatole, tryptamine), and high (indole, i3-acetamide, i3-pyruvate) efficacies. We displayed ligand-selective antagonist activities by i3-pyruvate, i3-aldehyde, indole, skatole, and tryptamine. Ligand binding assay identified low affinity (skatole, i3-pyruvate, and i3-acetamide) and very low affinity (i3-acrylate, i3-ethanol, indole) ligands of the murine AhR. Indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, and i3-acetamide induced CYP1A1 mRNA in intestinal LS180 and HT-29 cells, but not in the AhR-knockout HT-29 variant. We observed a similar CYP1A1 induction pattern in primary human hepatocytes. The most AhR-active catabolites (indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, i3-acetamide) elicited nuclear translocation of the AhR, followed by a formation of AhR-ARNT heterodimer and enhanced binding of the AhR to the CYP1A1 gene promoter. Collectively, we comprehensively characterized the interactions of gut microbial tryptophan catabolites with the AhR, which may expand the current understanding of their potential roles in intestinal health and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica , Genes Reporter , Humanos , Indóis , Ligantes , Redes e Vias Metabólicas , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica
5.
Calcif Tissue Int ; 105(6): 651-659, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31471674

RESUMO

Some epidemiological studies suggested caffeine consumption as the cause for bone mineral density loss. Certain genes involved in this process are regulated by vitamin D receptor (VDR). Therefore, we investigated if caffeine can affect inducible expression of VDR-regulated genes, some of them being involved in bone mineralization process. By employing reporter gene assay, polymerase chain reaction, and western blotting, we monitored the VDR activity and expression in cell cultures of intestinal (LS180), osteosarcoma (HOS), and normal human osteoblasts in vitro. While caffeine stimulated calcitriol-inducible VDR-dependent nanoluciferase activity in stable reporter cell line IZ-VDRE (derived from LS180), it rather modulated mRNA levels of target genes, like CYP24A1, BGLAP, SPP1, and TNSF11 in LS180 and HOS cells. However, caffeine significantly decreased calcitriol-inducible CYP24A1, TNSF11, and SPP1 transcripts in osteoblasts. This decrease had non-linear U-shaped profile. Our in vitro data demonstrate biphasic action of caffeine on the expression of certain calcitriol-inducible VDR-regulated genes in normal human osteoblasts.


Assuntos
Cafeína/farmacologia , Calcitriol/farmacologia , Osteossarcoma/tratamento farmacológico , Receptores de Calcitriol/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...