Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 5(2): 207-218, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732622

RESUMO

The retina is highly metabolically active, relying on glucose uptake and aerobic glycolysis. Situated in close contact to photoreceptors, a key function of cells in the retinal pigment epithelium (RPE) is phagocytosis of damaged photoreceptor outer segments (POS). Here we identify RPE as a local source of insulin in the eye that is stimulated by POS phagocytosis. We show that Ins2 messenger RNA and insulin protein are produced by RPE cells and that this production correlates with RPE phagocytosis of POS. Genetic deletion of phagocytic receptors ('loss of function') reduces Ins2, whereas increasing the levels of the phagocytic receptor MerTK ('gain of function') increases Ins2 production in male mice. Contrary to pancreas-derived systemic insulin, RPE-derived local insulin is stimulated during starvation, which also increases RPE phagocytosis. Global or RPE-specific Ins2 gene deletion decreases retinal glucose uptake in starved male mice, dysregulates retinal physiology, causes defects in phototransduction and exacerbates photoreceptor loss in a mouse model of retinitis pigmentosa. Collectively, these data identify RPE cells as a phagocytosis-induced local source of insulin in the retina, with the potential to influence retinal physiology and disease.


Assuntos
Insulina , Receptores Proteína Tirosina Quinases , Masculino , Camundongos , Animais , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Insulina/metabolismo , Retina/metabolismo , Fagocitose/fisiologia , Glucose/metabolismo
2.
J Inorg Biochem ; 171: 90-99, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28376339

RESUMO

RNA is known to interact with Mg2+ when assuming higher-ordered tertiary configurations. Structurally, when tRNA molecules interact with Mg2+, they consistently form a "L-shape" conformation each time they are synthesized. Therefore, if Mg2+ can induce tertiary structure formation, then binding to alternative cations could produce alternative tertiary configurations. By utilizing circular dichroism and mobility gel-shift assays it was observed that tRNA structure can be altered when in the presence of different divalent cationic species. Formation of these alternative structural configurations was further validated by aminoacylating these tRNA structural anomalies with their native enzyme, which resulted in markedly different degrees of activity. Thus, it was confirmed that structural changes do occur when tRNA forms complexes with different cations. To better understand these structural changes, quantitative cation binding to tRNA was determined through titrations as well as ICP-OES analysis, which indicated that the metal ions can bind to the tRNA structure in specific and non-specific ways. Lastly, it was observed through stopped-flow kinetics that tRNA can associate/dissociate from different cations to varying degrees, thus forming cation-specific complexes at unique rates.


Assuntos
Cobre/metabolismo , Chumbo/metabolismo , RNA de Transferência/metabolismo , Sítios de Ligação , Cátions Bivalentes/química , Dicroísmo Circular , Cobre/química , Cristalografia por Raios X , Instabilidade Genômica , Chumbo/química , Conformação de Ácido Nucleico , RNA de Transferência/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...