Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
2.
Iran J Basic Med Sci ; 27(7): 841-849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800027

RESUMO

Objectives: Right ventricular hypertrophy (RVH) often results in failure of the right ventricle or even the left ventricle. Rosmarinic acid (RA), a natural polyphenol, is commonly found in Boraginaceae species and some species of ferns and hornworts. This study looked at how RA affects oxidative stress and left ventricular hemodynamic functions as well as RVH in monocrotaline (MCT) induced RVH model rats. Materials and Methods: To cause RVH, MCT (60 mg/kg) was intraperitoneally (IP) injected. Rats were given saline or RA (10, 15, and 30 mg/kg, gavage, over 21 days). In anesthetized rats, the lead II electrocardiogram was recorded. The hemodynamic functions of the isolated heart were measured using the Langendorff apparatus (at constant pressure). Investigations were made into the right ventricular hypertrophy index (RVHI), the activities of superoxide dismutase, catalase, glutathione, and Wnt and ß-catenin gene expressions in the left ventricle. H&E staining was used. Results: A significant decline in electrocardiogram parameters and anti-oxidant enzyme activities, an increase in QTc (Q-T corrected) intervals, MDA (Malondialdehyde), RVHI, and Wnt/ß-catenin gene expression, and also significant changes in the hemodynamic parameters were demonstrated in the MCT group. RA improved the above-mentioned factors. Conclusion: According to the findings, RA may act as a cardioprotective agent against cardiovascular complications brought on by RVH due to its capacity to boost the activity of cardiac anti-oxidant enzymes and decrease the expression of genes involved in vascular calcification.

3.
J Asthma ; : 1-13, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376812

RESUMO

BACKGROUND: Allergic asthma is a destructive inflammatory process in the respiratory system. The anti-inflammatory and antioxidant effects of N-acetylcysteine (NAC) have been reported in patients with obstructive pulmonary disease. On the other hand, several studies have shown the modulatory effects of mesenchymal stem cells on the immune system and inflammatory responses. Accordingly, the purpose of the current study was to evaluate the effect of administration of adipose tissue-derived stem cells (ADSCs) plus NAC on regulatory T cell system balance in an allergic asthma model. METHODS: Eighty Sprague- Dawley rats were randomly divided into the following groups: Control, Plasmalite, Allergic asthma, Allergic asthma + ADSCs, NAC, Allergic asthma + NAC, Allergic asthma + ADSCs + NAC and Allergic asthma + Prednisolone. at the end of the experiment, arterial blood gas analysis, inflammatory cell counts in bronchoalveolar lavage fluid (BALF), inflammatory cytokine concentration, total IgE and specific OVA-IgE levels, gene expression levels of CD4+-T cell subsets, pulmonary indicators, edema, and lung histopathology were evaluated in all groups. RESULTS: Administration of NAC plus ADSCs demonstrated a significant decrease in total WBC and eosinophil counts, which was in line with remarkable decrease in IL-17 and TNF-α concentrations and increases in IL-10 level compared with other treated groups. NAC plus ADSC treatment showed significant increases in Treg gene expression, although Th17 and Th2 expression significantly decreased compared with that in prednisolone- treated rats. CONCLUSION: The results of the present study documented that the administration of ADSCs plus NAC has an inhibitory effect on the inflammation caused by allergic asthma in a rat model. The improvement of inflammatory indexes was significantly higher than that with prednisolone treatment.

4.
J Cardiovasc Pharmacol ; 83(3): 258-264, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38151743

RESUMO

ABSTRACT: Shortness of breath and syncope are common symptoms of right ventricular failure caused by pulmonary arterial hypertension (PAH), which is the result of blockage and increased pressure in the pulmonary arteries. There is a significant amount of evidence supporting the idea that inflammation and vascular calcification (VC) are important factors in PAH pathogenesis. Therefore, we aimed to investigate the features of the inflammatory process and gene expression involved in VC in monocrotaline (MCT)-induced PAH rats. MCT (60 mg/kg, i.p.) was used to induce PAH. Animals were given normal saline or rosmarinic acid (RA) (10, 15, and 30 mg/kg, gavage) for 21 days. An increase in right ventricular systolic pressure was evaluated as confirming PAH. To determine the level of inflammation in lung tissue, pulmonary edema and the total and differential white blood cell counts in the bronchoalveolar lavage fluid were measured. Also, the expression of NFκB, OPG, Runx2, and P-selectin genes was investigated to evaluate the level of VC in the heart. Our experiment showed that RA significantly decreased right ventricular hypertrophy, inflammatory factors, NFκB, Runx2, and P-selectin gene expression, pulmonary edema, total and differential white blood cell count, and increased OPG gene expression. Therefore, our research showed that RA protects against MCT-induced PAH by reducing inflammation and VC in rats.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Edema Pulmonar , Ratos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/prevenção & controle , Hipertensão Pulmonar/metabolismo , Monocrotalina/toxicidade , Ácido Rosmarínico , Edema Pulmonar/patologia , Selectina-P , Ratos Sprague-Dawley , Transdução de Sinais , Artéria Pulmonar , Inflamação/patologia , Modelos Animais de Doenças , Subunidade alfa 1 de Fator de Ligação ao Core/genética
5.
Neurochem Res ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966567

RESUMO

Sleep deprivation increases stress, anxiety, and depression by altering the endocannabinoid system's function. In the present study, we aimed to investigate the anti-anxiety and anti-depressant effects of the endocannabinoid anandamide (AEA) in the chronic sleep deprivation (SD) model in rats. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation + 20 mg/kg AEA (SD + A). The rats were kept in a sleep deprivation device for 18 h (7 to 1 a.m.) daily for 21 days. Open-field (OFT), elevated plus maze, and forced swimming tests (FST) were used to assess anxiety and depression-like behavior. As well as the cortical EEG, CB1R mRNA expression, TNF-α, IL-6, IL-4 levels, and antioxidant activity in the brain were examined following SD induction. AEA administration significantly increased the time spent (p < 0.01), the distance traveled in the central zone (p < 0.001), and the number of climbing (p < 0.05) in the OFT; it also increased the duration and number of entries into the open arms (p < 0.01 and p < 0.05 respectively), and did not reduce immobility time in the FST (p > 0.05), AEA increased CB1R mRNA expression in the anterior and medial parts of the brain (p < 0.01), and IL-4 levels (p < 0.05). AEA also reduced IL-6 and TNF-α (p < 0.05) and modulated cortical EEG. AEA induced anxiolytic-like effects but not anti-depressant effects in the SD model in rats by modulating CB1R mRNA expression, cortical EEG, and inflammatory response.

6.
Rep Biochem Mol Biol ; 12(1): 159-172, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37724153

RESUMO

Background: Serum and glucocorticoid-induced kinase 1 (SGK1) is an enzyme that may play an important role in ischemic-reperfusion (I/R) injury and myocardial dysfunction. Although many studies have been conducted on individual antioxidants, little attention has been paid to the effects of co-administration of an antioxidant with an SGK1 inhibitor on cardiac function after I/R. Methods: This study aimed to determine the effects of gallic acid (as an antioxidant) combined with an SGK1 inhibitor on I/R-induced cardiac dysfunction and inflammation. Sixty male Wistar rats were randomized into 6 groups, pretreated with gallic acid or vehicle for 10 days. Subsequently, the heart was isolated and exposed to I/R. In groups that received the SGK1 inhibitor, the heart was perfused with the SGK1 inhibitor GSK650394, 5 min before induction of ischemia. After that, cardiac function, inflammatory factors, and myocardial damage were evaluated. Results: The combination of these two compounds improved cardiac contractility, heart rate, rate pressure product, left ventricular developed pressure, left ventricular systolic pressure, perfusion pressure, and QRS voltage significantly (P < 0.05). In addition, concomitant therapy of these two agents reduced tumor necrosis factor-alpha and interleukin-6, and the activity of creatine kinase-MB, lactate dehydrogenase, and troponin-I (P < 0.05). Conclusion: The results indicated that administration of gallic acid with the SGK1 inhibitor may have a potentiating effect on the improvement of cardiac dysfunction and I/R-induced inflammation.

7.
Neuropeptides ; 101: 102336, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37290176

RESUMO

Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.


Assuntos
Região Hipotalâmica Lateral , Privação do Sono , Ratos , Masculino , Animais , Orexinas/metabolismo , Região Hipotalâmica Lateral/metabolismo , Privação do Sono/metabolismo , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Ratos Wistar , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Ingestão de Alimentos/fisiologia , RNA Mensageiro/metabolismo , Receptores de Orexina/metabolismo
8.
Life Sci ; 325: 121770, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37192699

RESUMO

AIMS: There is a close link between oxidative stress, inflammation, and type 2 diabetes mellitus (T2DM). Gentisic acid (GA) is a di-phenolic compound and an active metabolite of aspirin that possesses antioxidant and anti-inflammatory properties, but its potential anti-diabetic effects have not been evaluated so far. Therefore, this study aimed to evaluate GA's potential antidiabetic effects through the Nuclear Factor Erythroid 2-Related Factor (Nrf2) and Nuclear Factor Kappa Beta (NF-кB) signaling pathways. MATERIAL AND METHODS: In this study, T2DM induced by a single intraperitoneal injection of STZ (65 mg/kg B.W) after 15 min nicotinamide (120 mg/kg B.W) injection. After seven days of injections, fasting blood glucose (FBS) was measured. Seven days after FBS monitoring treatments started. Grouping and treatments were as follows: 1) Normal control group; NC, 2) Diabetic control group; DC, 3) Metformin group; MT (150 mg/kg B.W, daily), 4) Test group; GA (100 mg/kg B.W, daily). Treatments continued for 14 consecutive days. KEY FINDINGS: Diabetic mice treatment with GA significantly decreased FBS, improved plasma lipid profiles and pancreatic antioxidant status. GA modulated Nrf2 pathway by upregulation of Nrf2 protein, NAD(P)H: quinone oxidoreductase 1 (Nqo1), and p21, and downregulation of miR-200a, Kelch-like ECH-associated protein 1 (Keap1), and nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2). Also, GA attenuated inflammation by upregulation of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and interleukin-10 (IL-10) and downregulation of miR-125b, NF-кB, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1ß). SIGNIFICANCE: GA attenuates T2DM, possibly by improving antioxidant status through the Nrf2 pathway and attenuation of inflammation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , MicroRNAs , Camundongos , Animais , Masculino , NF-kappa B/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estreptozocina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Niacinamida/farmacologia , Estresse Oxidativo , Inflamação/tratamento farmacológico , MicroRNAs/metabolismo
9.
Chem Biol Interact ; 380: 110507, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37120126

RESUMO

Oxidative stress and inflammation play a pivotal role in the pathogenesis of diabetic nephropathy (DN). Local renin-angiotensin systems (RAS) contribute to the pathogenesis and progression of DN by exacerbating oxidative stress and inflammation.Gentisic acid (GA), a phenolic compound and also a metabolite of aspirin, is reported to possess antioxidant and anti-inflammatory properties. However, the protective effects of GA against DN remain to be elucidated. Nicotinamide (120 mg/kg) and streptozotocin (65 mg/kg) were used to induce diabetes in male mice. Oral administration of GA once daily for 2 weeks (100 mg/kg) ameliorated diabetes-induced renal injury by reducing plasma creatinine, urea, blood urea nitrogen, and urinary albuminuria levels. Diabetic mice showed a significant increase in total oxidant status and malondialdehyde, along with decreased catalase, superoxide dismutase, and glutathione peroxidase in the kidney tissue, which was ameliorated in the GA-treated mice. Histopathological analysis showed that GA treatment reduced diabetes-induced renal injury. Furthermore, GA treatment was associated with the downregulation of miR-125b, nuclear factor kappa beta (NF-кB), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and upregulation of interleukin-10 (IL-10), miR-200a, and nuclear factor erythroid 2-related factor 2 (Nrf2) in the renal tissue. GA treatment also downregulated angiotensin-converting enzyme 1 (ACE1), angiotensin II receptor 1 (AT1R), and NADPH oxidase 2 (NOX 2) and upregulated angiotensin-converting enzyme 2 (ACE2). In conclusion, the ameliorative effects of GA against DN may be attributed to its powerful antioxidant and anti-inflammatory properties through the downregulation of NF-кB, upregulation of Nrf2, and modulation of RAS in renal tissue.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , MicroRNAs , Camundongos , Masculino , Animais , Nefropatias Diabéticas/patologia , NF-kappa B/metabolismo , Estreptozocina/toxicidade , Sistema Renina-Angiotensina , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim , Estresse Oxidativo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , MicroRNAs/metabolismo , Angiotensinas/metabolismo , Angiotensinas/farmacologia , Angiotensinas/uso terapêutico
10.
Gastroenterol Hepatol Bed Bench ; 16(1): 499-508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070111

RESUMO

Aim: This study aims to evaluate whether biochemical alterations caused by methylglyoxal (MG), improves by the administration of gallic acid (GA), crocin (Cr), and metformin (MT) in the liver. Background: MG is produced naturally through various physiological processes, but high levels of MG cause inflammation in hepatocytes. Normal liver function is essential for maintaining glucose homeostasis. Gallic acid and crocin can reduce inflammation. Methods: This experiment was done in 5 weeks. 50 male NMRI mice were randomly divided into 5 groups (n=10): 1) Control, 2) MG (600 mg/Kg/d, p.o.), 3) MG+GA (30 mg/kg/day, p.o.), 4) MG+Cr (60 mg/kg/day, p.o.), 5) MG+MT (150 mg/kg/day, p.o.). After one week of habituation, MG was administered for four weeks. Gallic acid, crocin, and metformin were administered in the last two weeks. Biochemical and histologic evaluations were assessed after plasma collection and tissue sample preparation. Results: Gallic acid and crocin-received groups significantly reduced fasting blood glucose, total cholesterol, triglyceride levels, and elevated insulin sensitivity. Administration of MG exerted a marked increase in the levels of hepatic enzymes. Treatment with gallic acid, crocin, and metformin significantly decreased them. The altered levels of inflammatory factors in the diabetic group were significantly improved in the diabetic-treated groups. High levels of steatosis and red blood cells (RBCs) accumulation in the MG group markedly recovered in other treated mice. Conclusion: Harmful effects of accumulated MG in the liver of diabetic mice were effectively attenuated by using gallic acid and crocin.

11.
Iran J Basic Med Sci ; 26(2): 164-175, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36742142

RESUMO

Objectives: Studies show that chronic injuries like air pollution or acute damage such as hepatic ischemia-reperfusion (IR) cause various cellular pathologies such as oxidative stress, apoptosis, autophagy, and inflammation in hepatocytes. p-Coumaric acid (p-CA) is known as an antioxidant with many therapeutic impacts on inflammatory-related pathologies. In this experiment, we aimed to assess the hepatoprotective effects of p-CA on liver damage induced by dust and IR injury in adult male rats. Materials and Methods: Forty-eight adult male Wistar rats were divided into 6 groups; Control (CTRL); sham; DMSO+Dust+Laparotomy (LPT); DMSO+Dust+Ischemia-reperfusion (IR); p-CA+Dust+LPT; and p-CA+Dust+IR. Clean air, DMSO, p-CA, and dust were administrated 3 days a week for 6 consecutive weeks. Animals were sacrificed, the blood samples were aspirated and the liver sections were prepared for biochemical and histopathological assessments. Results: Significantly (P<0.05), the results represented that dust and IR can potentially increase the levels of ALT, AST, direct and total bilirubin, triglyceride, and cholesterol in serum. Also, MDA, TNF-α , NF-κB . HMGB-1 and ATG-7 levels were increased in hepatocytes. Gene expression of Nrf2, HOX-1, IL-6, HOTAIR, and miR-34a showed an incremental trend in the liver tissue. Total antioxidant capacity (TAC) in hepatocytes was decreased following dust exposure and IR induction. Also, miR-20b-5p, MEG3, and SIRT1 in the liver were decreased in dust and dust+IR groups. Conclusion: p-CA alleviated pathological changes caused by dust exposure and IR injury. p-CA protected hepatic injury induced by dust and IR by inhibition of oxidative injury, inflammation, and autophagy.

12.
Tissue Cell ; 80: 102011, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603371

RESUMO

Cytokines are the most important inflammatory mediators and are well-known as the main cause of emphysema. Adipose-derived stem cells (ADSCs) as a cell-based treatment strategy could play a pivotal role in lung regeneration through anti-inflammatory and paracrine properties. Accordingly, the aim of this study was to the comparison of inflammation markers' improvement in response to the intratracheal and systemic delivery method of adipose-derived mesenchymal stem cells in emphysema. Forty-eight rats were divided into five groups including Control, Elastase (25 IU/kg, Intratracheal, at day first and 10th), Elastase+PBS, Intratracheal cell therapy (1 ×107, at day 28th), and Systemic cell therapy groups (1 ×107, Jugular vein, at day 28th). After 3 weeks, the blood gas analysis (PO2, PCO2 and pH), fibrinogen level, and C-reactive protein (CRP) concentrations were measured in all groups. In addition, inflammatory genes expression, and concentration levels of pro and anti-inflammatory cytokines (IL-6, IL-17, TNF-α, and TGF-ß,) were evaluated using Real-time PCR and Elisa kits, respectively. The statistical analysis of our data shows that local administration leads to more significant treatment efficacy with decreased inflammation parameters such as WBC count and pro-inflammatory cytokines in comparison with systemic treatment. Besides, these results were approved by more reduction of CRP and fibrinogen concentration levels in blood samples of intra-tracheal AMSCs-treated rats compare with the systemic group. Moreover, the improvement in histopathology indexes of the local administrated group was significantly better than the systemic group. Accordingly, the obtained results suggest local administration as the most efficacious route for mesenchymal stem cells delivery in patients with emphysema.


Assuntos
Enfisema , Células-Tronco Mesenquimais , Animais , Ratos , Citocinas/metabolismo , Fibrinogênio/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Elastase Pancreática/metabolismo
13.
Arch Physiol Biochem ; 129(3): 655-662, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33460343

RESUMO

BACKGROUND: Methylglyoxal (MG) has been reported to be a toxic by-product of glycolysis and intracellular stressor compound. This study investigated the effects of gallic acid (GA) against diabetic nephropathy (DN) induced by MG in male mice. METHODS: DN was induced by methylglyoxal (600 mg/kg/day, p.o.) treated for 28 consecutive days. The animals received GA (30 mg/kg/day, p.o.) and metformin (MT) (150 mg/kg/day, p.o.) for 7 consecutive days after diabetes induction. Biochemical assays, antioxidant evaluation, microRNAs associated with fibrosis, endoplasmic reticulum stress, and histopathological analysis were examined. RESULTS: MG increased malondialdehyde, albuminuria, Nrf2, miR-192 and miR-204 expression in diabetic groups and GA decreased them. Superoxide dismutase, catalase, glyoxalase1, and miR-29a expression decreased in diabetic groups and increased in treatment with GA. CONCLUSION: Our results revealed that GA has improved DN induced by MG via amelioration of biochemical indices, histopathological aspects, oxidative stress and microRNAs associated with endoplasmic reticulum stress and fibrosis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Camundongos , Masculino , Animais , Nefropatias Diabéticas/metabolismo , Ácido Gálico/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Rim , Estresse Oxidativo , Fibrose
14.
Iran J Basic Med Sci ; 25(11): 1341-1348, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36474578

RESUMO

Objectives: Accumulation of methylglyoxal (MGO) occurs in diabetes. MicroRNA-204 is an important intracellular marker in the diagnosis of endoplasmic reticulum stress. Crocin (Crn) has beneficial effects for diabetes, but the effect of Crn on MGO-induced diabetic nephropathy has not been investigated. The current research evaluated the effects of Crn and metformin (MET) on diabetic nephropathy induced by MGO in male mice. Materials and Methods: In this experimental study, 70 male NMRI mice were randomly divided into 7 groups: control, MGO (600 mg/Kg/d), MGO+Crn (15, 30, and 60 mg/kg/d), MGO+MET (150 mg/kg/d), and Crn60 (60 mg/kg/d). Methylglyoxal was gavaged for four weeks. After proving hyperglycemia, Cr and MET were administered orally in the last two weeks. Biochemical and antioxidant evaluations, microRNA expression, and histological evaluation were assessed. Results: The fasting blood glucose, urine albumin, blood urea nitrogen, plasma creatinine, malondialdehyde, Nrf2, miR-204, and miR-192 expression increased in the MGO group. These variables decreased in Crn-treated animals. The decreased levels of superoxide dismutase, catalase, glyoxalase 1, Glutathione, and miR-29a expression in the MGO group improved in the diabetic-treated mice. Histological alterations such as red blood cell accumulation, inflammation, glomerulus diameter changes, and proximal cell damage were also observed. Conclusion: Our study indicated that Crn and MET attenuated renal damage by inhibiting endoplasmic reticulum stress.

15.
J Res Med Sci ; 27: 79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438076

RESUMO

Background: The main aim of the present study is to investigate the independent association objectively measured level of physical activity (PA) and serum concentration of liver aminotransferases (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) among seemingly healthy individuals. Materials and Methods: The current secondary study was conducted in the framework of Khuzestan Comprehensive Health Study, a large population-based multicentric cross-sectional study, conducted between 2016 and 2019 on 18,966 individuals living in Khuzestan province, southwestern Iran. International PA Questionnaire was used for evaluating PA levels, and participants were divided into three groups: low, moderate, and high PA, and ALT and AST were compared between these groups. Results: The mean ± standard deviation age of participants was 38.65 ± 11.40 years. The majority of participants were female (71%). The mean concentration of ALT in total sample was 18.22 ± 13.06 (male: 23.65 ± 16.26 and female: 15.57 ± 10.06), while the mean concentration of ALT in total sample was 19.61 ± 8.40 (male: 22.44 ± 10.03 and female: 18.23 ± 7.08). A statistically significant inverse correlation was found between AST (r = -0.08, P = 0.02) and ALT (r = -0.038, P < 0.001) with total PA score. The mean concentration of ALT was 19.96 ± 13.63 in people with low PA, 17.62 ± 12.31 with moderate PA, and 18.12 ± 13.47 with high PA (P < 0.001). The mean concentration of AST in total sample was 20.37 ± 8.85 in people with low PA, 19.21 ± 8.83 with moderate PA, and 19.75 ± 8.85 with high PA (P < 0.001). The difference between people in different levels of PA in terms of mean concentration of AST was remained significant (P = 0.003); however, the difference for ALT was not remained significant after adjusting potential confounders. Conclusion: The current study based on large sample showed that PA had a statistically negative association with the concentration of liver aminotransferases in the seemingly healthy individuals; however, the observed associations were weak. People in the lowest levels of PA had the highest levels of ALT and AST.

16.
Tissue Cell ; 79: 101960, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356559

RESUMO

BACKGROUND AND OBJECTIVE: Renal tissue injuries by free radicals are an essential reason in pathogenesis of urinary tract stones. Ethylene glycol is one of the toxic agents which can causes to the increases in biosynthesis of reactive oxygen species and oxidative stress condition. Natural antioxidants have been reported to protective efficacy against renal stones formation. Accordingly, the aim of the current experiment was to identify the renal protective effect of chlorogenic acid as a well-prominent antioxidant on ethylene glycol-induced renal stone model targeting the NFKB-RUNX2-AP1-OSTERIX signaling pathway. MATERIALS AND METHODS: Renal stones model were established by ethylene glycol (Percent: 0.75) within the daily drinking water for rats. Treatment groups received cystone (750 mg/kg) and chlorogenic acid (100, 200, and 400 mg/kg, day: 15th to 28th, gavage). After 4 weeks, the renal function parameters (calcium, uric acid, creatinine, total protein, oxalate, and citrate) in plasma, urine, and renal tissue were measured. Moreover, oxidative stress factors and gene expression of NFKB, RUNX2, AP1, and OSTERIX were also evaluated. RESULTS: The results showed improved renal function in chlorogenic acid-treated groups. The total proteins and creatinine excretion were decreased. Also the gene expression of oxidative stress pathway (NFKB-RUNX2-AP1-OSTERIX) were decreased which caused to increases of antioxidant enzymes. CONCLUSIONS: the antioxidant activity increases by chlorogenic acid treatment may have a critical role in prevention of calcium oxalate formation via inhibition of the NFKB-RUNX2-AP1-OSTERIX signaling pathway.


Assuntos
Ácido Clorogênico , Subunidade alfa 1 de Fator de Ligação ao Core , Animais , Ratos , Ácido Clorogênico/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Etilenoglicol/toxicidade , Antioxidantes , Creatinina , Transdução de Sinais
17.
Inflammation ; 45(6): 2294-2308, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35789305

RESUMO

Acute kidney injury (AKI) is identified by a progressive reduction in the glomerular filtration rate (GFR) and retention of nitrogenous waste products. Traumatic and nontraumatic rhabdomyolysis is recently considered the main cause of AKI. According to several studies, stem cell treatment is a promising therapeutic strategy for many types of disorders including AKI. The main limitation of mesenchymal stem cells (MSCs) therapy is reducing cell survival in response to oxidative stress products in injured organ areas. Gallic acid (GA) as a well-known antioxidant has been reported to confer potent-free radical scavenging and anti-inflammatory properties. Therefore, the aim of the current study was to assess the influence of MSCs and GA in acute renal injury following rhabdomyolysis induced by glycerol. A total of 70 healthy rats were divided into seven groups (10 in each group): control, AKI (glycerol, intramuscular), cell therapy (AKI + intravenous injection of mesenchymal stem cells derived from adipose tissue (AMCs), AKI + AMCs + GA (50, 100, and 200 mg/kg, intraperitoneally, 3 days a week for 3 consecutive weeks), and positive control group (the most effective dose of gallic acid). After the treatment, rats were sacrificed; blood, urine, and kidney tissues were collected; and qualitative and quantitative parameters (including blood urea nitrogen (BUN), creatine kinase (CK), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), aspartate transaminase (SGOT), oxidative stress markers kidney function parameters) and histopathological indexes were assayed. Our results revealed that co-treatment of AMCs plus GA into AKI rats decreased BUN and creatinine and ameliorated kidney injury parameters after 3 weeks. Improved oxidative stress markers such as decreased MDA and increased SOD and CAT were significant in the GA + AMCs group compared to the AMCs alone in AKI rats. Also, the histopathological appearances of AKI rats including renal tubule cavity expansion and renal tubular epithelial cell edema, and interstitial inflammation, were alleviated using GA + AMCs treatment compared to the control. The obtained results of the current study documented that antioxidants could make mesenchymal stem cells more resistant to the condition in which they are supposed to be transplanted and probably improve the efficacy of stem cell therapy in AKI patients.


Assuntos
Injúria Renal Aguda , Células-Tronco Mesenquimais , Rabdomiólise , Ratos , Animais , Glicerol/efeitos adversos , Glicerol/metabolismo , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Rabdomiólise/terapia , Rabdomiólise/induzido quimicamente , Rabdomiólise/complicações , Injúria Renal Aguda/induzido quimicamente , Células-Tronco Mesenquimais/metabolismo , Rim/patologia , Tecido Adiposo/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
18.
Turk J Gastroenterol ; 33(6): 505-514, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35786619

RESUMO

BACKGROUND: The role of hepatocyte apoptosis and inflammation has been implicated in the progression of nonalcoholic steatohepatitis (NASH). Overproduction of reactive oxygen species (ROS) appears to accelerate these pathways through the activation of Fas receptor signaling. Therefore, we explored the hepatoprotective effects of crocin as a strong free radical scavenger against oxidative damages leading to NASH development. METHODS: Thirty-two male mice were randomly divided into control, NASH, NASH + crocin, and crocin groups. They received an intraperi- toneal injection of crocin twice a week, for 3 weeks. For NASH model induction, the animals were fed with a Western diet and exposed to cigarette smoke for 8 weeks. At the end of the experiment, liver histology, biochemical, and biomolecular analyses were done to evaluate the antioxidant, anti-inflammatory, and anti-apoptotic activities of crocin in the NASH model. RESULTS: Evaluation of the features of the NASH model revealed steatosis, inflammatory infiltrate, and ballooning degeneration. Metabolic dysfunction was associated with elevated serum levels of the lipid profile and decreased hepatic liver enzymes. The increased content of malondialdehyde (MDA) and reduced antioxidant activities confirmed hepatotoxicity induction. There was a significant increase in expression level of Fas, caspase 3, and NF-κB genes that was also associated with elevation in hepatic TNF-α content. Moreover, expression the of Fas receptor protein was significantly detected on the hepatocyte membrane. Treatment with crocin effectively improved NASH-related parameters, and the histopathological findings were also parallel with the resulting changes. CONCLUSION: Crocin can be introduced as a candidate hepatoprotective agent against NASH by virtue of its anti-inflammatory, antioxi- dant, and anti-apoptotic properties, possibly through regulation of the Fas death receptor pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Anti-Inflamatórios , Antioxidantes/farmacologia , Carotenoides , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transdução de Sinais , Receptor fas
19.
Iran J Basic Med Sci ; 25(2): 179-186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35655590

RESUMO

Objectives: Methylglyoxal (MG) provokes endoplasmic reticulum (ER) stress in ß-cells and triggers pancreatic ß-cell dysfunction. Crocin has anti-diabetic properties. The present study investigated whether crocin prevented pancreas damages induced by MG. Materials and Methods: Diabetes was induced by MG administration (600 mg/kg/day, PO). On the fourteenth day, after proving hyperglycemia, crocin (15, 30, and 60 mg/kg) and metformin (MT) (150 mg/kg) were used for detoxification of MG until the end of the experiment. The animals were divided into 6 groups: 1) control, 2) diabetic by MG, 3) MG + crocin 15 mg/kg, 4) MG + crocin 30 mg/kg, 5) MG + crocin 60 mg/kg, and 6) MG + MT. The data were analyzed by one-way analysis of variance and significant differences were compared by Tukey and Bonferroni tests (P<0.05). Biochemical assays, antioxidant evaluation, and microRNAs expression associated with ER stress were assessed. Results: MG induced hyperglycemia, insulin resistance, and dyslipidemia (P<0.001). Crocin and MT significantly ameliorated ß-cell function through reduction of fasting blood glucose, malondialdehyde levels (P<0.001), and significant elevation of anti-oxidant enzyme activity accompanied by regulation of glutathione and glyoxalase1-Nrf2 in MG induced diabetic mice. Crocin and MT significantly down-regulated microRNAs 204, 216b, 192, and 29a expression (P<0.001). Crocin (60 mg/kg) (P<0.01) and MT (P<0.001) could improve diameter of pancreatic islets in MG treated mice. Conclusion: Crocin prevents the progression of diabetes through modulating ER stress-associated microRNAs and GLO1 activity with the helpful effects of glutathione and Nrf2.

20.
Iran J Basic Med Sci ; 25(4): 460-467, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35656072

RESUMO

Objectives: Exposures to particulate matter (PM) have been related to increased risk for cardiovascular health effects and can promote cardiac ischemia and oxidative stress. Crocin has strong antioxidant properties and stress-reducing effects. Therefore, this study considered the effect of crocin on cardiovascular parameters in rats exposed to PM10. Materials and Methods: Forty Wistar rats (male, 250-300 g) were grouped as control, receiving normal saline and crocin, receiving PM10, receiving PM10+Crocin. Instillation of PM10 into the trachea was done. Forty-eight hours after exposure to the normal saline or PM, the heart was separated. Hemodynamic and electrophysiological factors were measured. The levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase activity (CAT), malondialdehyde (MDA), xanthine oxidase, were evaluated by kits. Results: The voltage of the QRS complex was significantly reduced and PR and QTc intervals increased in PM10 groups. Hemodynamic parameters before ischemia and in the ischemic-reperfusion stage, in the PM10 group, showed a significant decrease. In the ischemic hearts of the PM10 group, a significant decline in the activity of CAT, SOD, and GPx, and a significant increase in MDA and XOX enzymes activity were observed, and crocin improved all of these factors. Conclusion: Cardiac ischemia causes abnormal hemodynamic factors of the heart, which are exacerbated by PM10 and further reduce the heart's contractile strength. Increased oxidative stress due to PM10 is probably one of the important reasons for these changes. This study suggests that the use of antioxidants such as crocin improves the cardiovascular adverse effects of myocardial ischemia and PM10 exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...