Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Cell ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38876107

RESUMO

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.

2.
One Health ; 18: 100764, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855195

RESUMO

Vector-borne diseases (VBDs) are considered as (re-)emerging, but information on the transmission cycles and wildlife reservoirs is often incomplete, particularly with regard to urban areas. The present study investigated blood samples from European hedgehogs (Erinaceus europaeus) presented at wildlife rehabilitation centres in the region of Hanover. Past exposure to B. burgdorferi sensu lato (s.l.) and tick-borne encephalitis virus (TBEV) was assessed by serological detection of antibodies, while current infections with Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Neoehrlichia mikurensis, Bartonella spp., Babesia spp. and Spiroplasma ixodetis were investigated by (q)PCR. Of 539 hedgehogs tested for anti-Borrelia antibodies, 84.8% (457/539) were seropositive, with a higher seropositivity rate in adult than subadult animals, while anti-TBEV antibodies were detected in one animal only (0.2%; 1/526). By qPCR, 31.2% (168/539) of hedgehog blood samples were positive for Borrelia spp., 49.7% (261/525) for A. phagocytophilum, 13.0% (68/525) for Bartonella spp., 8.2% for S. ixodetis (43/525), 8.0% (42/525) for Rickettsia spp. and 1.3% (7/525) for Babesia spp., while N. mikurensis was not detected. While further differentiation of Borrelia spp. infections was not successful, 63.2% of the A. phagocytophilum infections were assigned to the zoonotic ecotype I and among Rickettsia spp. infections, 50.0% to R. helvetica by ecotype- or species-specific qPCR, respectively. Sequencing revealed the presence of a Rickettsia sp. closely related to Rickettsia felis in addition to a Bartonella sp. previously described from hedgehogs, as well as Babesia microti and Babesia venatorum. These findings show that hedgehogs from rehabilitation centres are valuable sources to identify One Health pathogens in urban areas. The hedgehogs are not only exposed to pathogens from fleas and ticks in urban areas, but they also act as potent amplifiers for these vectors and their pathogens, relevant for citizens and their pets.

3.
J Microbiol Methods ; 222: 106941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714225

RESUMO

Reliable detection of bacteria belonging to the Borrelia burgdorferi sensu lato species complex in vertebrate reservoirs, tick vectors, and patients is key to answer questions regarding Lyme borreliosis epidemiology. Nevertheless, the description of characteristics of qPCRs for the detection of B. burgdorferi s. l. are often limited. This study covers the development and validation of two duplex taqman qPCR assays used to target four markers on the chromosome of genospecies of B. burgdorferi s. l. Analytical specificity was determined with a panel of spirochete strains. qPCR characteristics were specified using water or tick DNA spiked with controlled quantities of the targeted DNA sequences of B. afzelii, B. burgdorferi sensu stricto or B. bavariensis. The effectiveness of detection results was finally evaluated using DNA extracted from ticks and biopsies from mammals whose infectious status had been determined by other detection assays. The developed qPCR assays allow exclusive detection of B. burgdorferi s. l. with the exception of the M16 marker which also detect relapsing fever Borreliae. The limit of detection is between 10 and 40 copies per qPCR reaction depending on the sample type, the B. burgdorferi genospecies and the targeted marker. Detection tests performed on various kind of samples illustrated the accuracy and robustness of our qPCR assays. Within the defined limits, this multi-target qPCR method allows a versatile detection of B. burgdorferi s. l., regardless of the genospecies and the sample material analyzed, with a sensitivity that would be compatible with most applications and a reproducibility of 100% under measurement conditions of limits of detection, thereby limiting result ambiguities.


Assuntos
Grupo Borrelia Burgdorferi , DNA Bacteriano , Doença de Lyme , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Doença de Lyme/diagnóstico , Doença de Lyme/microbiologia , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/isolamento & purificação , Grupo Borrelia Burgdorferi/classificação , DNA Bacteriano/genética , Humanos , Carrapatos/microbiologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/isolamento & purificação
4.
Ecol Evol ; 14(5): e11397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779535

RESUMO

Lyme borreliosis (LB) is the most common vector-borne disease in the Northern Hemisphere caused by spirochetes belonging to the Borrelia burgdorferi sensu lato (Bbsl) complex. Borrelia spirochetes circulate in obligatory transmission cycles between tick vectors and different vertebrate hosts. To successfully complete this complex transmission cycle, Bbsl encodes for an arsenal of proteins including the PFam54 protein family with known, or proposed, influences to reservoir host and/or vector adaptation. Even so, only fragmentary information is available regarding the naturally occurring level of variation in the PFam54 gene array especially in relation to Eurasian-distributed species. Utilizing whole genome data from isolates (n = 141) originated from three major LB-causing Borrelia species across Eurasia (B. afzelii, B. bavariensis, and B. garinii), we aimed to characterize the diversity of the PFam54 gene array in these isolates to facilitate understanding the evolution of PFam54 paralogs on an intra- and interspecies level. We found an extraordinarily high level of variation in the PFam54 gene array with 39 PFam54 paralogs belonging to 23 orthologous groups including five novel paralogs. Even so, the gene array appears to have remained fairly stable over the evolutionary history of the studied Borrelia species. Interestingly, genes outside Clade IV, which contains genes encoding for proteins associated with Borrelia pathogenesis, more frequently displayed signatures of diversifying selection between clades that differ in hypothesized vector or host species. This could suggest that non-Clade IV paralogs play a more important role in host and/or vector adaptation than previously expected, which would require future lab-based studies to validate.

5.
BMC Genomics ; 25(1): 380, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632506

RESUMO

BACKGROUND: Trombiculid mites are globally distributed, highly diverse arachnids that largely lack molecular resources such as whole mitogenomes for the elucidation of taxonomic relationships. Trombiculid larvae (chiggers) parasitise vertebrates and can transmit bacteria (Orientia spp.) responsible for scrub typhus, a zoonotic febrile illness. Orientia tsutsugamushi causes most cases of scrub typhus and is endemic to the Asia-Pacific Region, where it is transmitted by Leptotrombidium spp. chiggers. However, in Dubai, Candidatus Orientia chuto was isolated from a case of scrub typhus and is also known to circulate among rodents in Saudi Arabia and Kenya, although its vectors remain poorly defined. In addition to Orientia, chiggers are often infected with other potential pathogens or arthropod-specific endosymbionts, but their significance for trombiculid biology and public health is unclear. RESULTS: Ten chigger species were collected from rodents in southwestern Saudi Arabia. Chiggers were pooled according to species and screened for Orientia DNA by PCR. Two species (Microtrombicula muhaylensis and Pentidionis agamae) produced positive results for the htrA gene, although Ca. Orientia chuto DNA was confirmed by Sanger sequencing only in P. agamae. Metagenomic sequencing of three pools of P. agamae provided evidence for two other bacterial associates: a spirochaete and a Wolbachia symbiont. Phylogenetic analysis of 16S rRNA and multi-locus sequence typing genes placed the spirochaete in a clade of micromammal-associated Borrelia spp. that are widely-distributed globally with no known vector. For the Wolbachia symbiont, a genome assembly was obtained that allowed phylogenetic localisation in a novel, divergent clade. Cytochrome c oxidase I (COI) barcodes for Saudi Arabian chiggers enabled comparisons with global chigger diversity, revealing several cases of discordance with classical taxonomy. Complete mitogenome assemblies were obtained for the three P. agamae pools and almost 50 SNPs were identified, despite a common geographic origin. CONCLUSIONS: P. agamae was identified as a potential vector of Ca. Orientia chuto on the Arabian Peninsula. The detection of an unusual Borrelia sp. and a divergent Wolbachia symbiont in P. agamae indicated links with chigger microbiomes in other parts of the world, while COI barcoding and mitogenomic analyses greatly extended our understanding of inter- and intraspecific relationships in trombiculid mites.


Assuntos
Borrelia , Microbiota , Orientia tsutsugamushi , Tifo por Ácaros , Trombiculidae , Wolbachia , Animais , Borrelia/genética , DNA , Tipagem de Sequências Multilocus , Orientia , Orientia tsutsugamushi/genética , Filogenia , RNA Ribossômico 16S/genética , Roedores/genética , Arábia Saudita , Tifo por Ácaros/epidemiologia , Tifo por Ácaros/microbiologia , Trombiculidae/genética , Trombiculidae/microbiologia , Wolbachia/genética
6.
Pathogens ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38003765

RESUMO

Human lice, Pediculus humanus, can transmit various pathogens, including Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii. Xenosurveillance is an epidemiological approach to assessing human infection risks performed by screening vectors of infectious disease agents. In the proof-of-principle study reported herein, the DNA of 23 human lice was collected from the clothes of 30 homeless Ethiopian individuals. These samples were assessed using 16S rRNA gene-specific pan-eubacterial PCR for screening, followed by Bartonella genus 16S-23S internal transcribed spacer (ITS) sequence-specific PCR, Bartonella genus gltA gene-specific PCR, and 16S rRNA gene PCR with specificity for relapsing-fever-associated Borrelia spp. with subsequent sequencing of the amplicons. In one sample, the pan-eubacterial 16S rRNA gene-specific screening PCR, the Bartonella genus 16S-23S ITS sequence-specific PCR, and the Bartonella genus gltA gene-specific PCR allowed for the sequencing of B. quintana-specific amplicons. In two additional samples, Bartonella genus gltA gene-specific PCR also provided sequences showing 100% sequence identity with B. quintana. In total, 3/23 (13.0%) of the assessed lice were found to be positive for B. quintana. Correlating clinical data were not available; however, the assessment confirmed the presence of B. quintana in the local louse population and thus an associated infection pressure. Larger-sized cross-sectional studies seem advisable to more reliably quantify the infection risk of lice-infested local individuals. The need for prevention by providing opportunities to maintain standard hygiene for Ethiopian homeless individuals is stressed by the reported findings, especially in light of the ongoing migration of refugees.

7.
Infect Genet Evol ; 115: 105502, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716446

RESUMO

Borrelia burgdorferi sensu lato is a species complex of spirochetal bacteria that occupy different ecological niches which is reflected in their reservoir host- and vector-associations. Borrelia genomes possess numerous linear and circular plasmids. Proteins encoded by plasmid genes play a major role in host- and vector-interaction and are important for Borrelia niche adaptation. However, the plasmid composition and therewith the gene repertoire may vary even in strains of a single species. Borrelia garinii, one of the six human pathogenic species, is common in Europe (vector Ixodes ricinus), Asia (vector Ixodes persulcatus) and in marine birds (vector Ixodes uriae). For the latter, only a single culture isolate (Far04) and its genome were previously available. The genome was rather small containing only one circular and six linear plasmids with a notable absence of cp32 plasmids. To further investigate B. garinii from marine transmission cycles and to explore i) whether the small number of plasmids found in isolate Far04 is a common feature in B. garinii from marine birds and presents an adaptation to this particular niche and ii) whether there may be a correlation between genome type and host species, we initiated in vitro cultures from live I. uriae collected in 2017 and 2018 from marine avian hosts and their nests. Hosts included common guillemots, Atlantic Puffin, razorbill, and kittiwake. We obtained 17 novel isolates of which 10 were sequenced using Illumina technology, one also with Pacific Bioscience technology. The 10 genomes segregated into five different genome types defined by plasmid types (based on PFam32 loci). We show that the genomes of seabird associated B. garinii contain fewer plasmids (6-9) than B. garinii from terrestrial avian species (generally ≥10), potentially suggesting niche adaptation. However, genome type did not match an association with the diverse avian seabird hosts investigated but matched the clonal complex they originated from, perhaps reflecting the isolates evolutionary history. Questions that should be addressed in future studies are (i) how is plasmid diversity related to host- and/or vector adaptation; (ii) do the different seabird species differ in reservoir host competence, and (iii) can the genome types found in seabirds use terrestrial birds as reservoir hosts.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Charadriiformes , Ixodes , Doença de Lyme , Animais , Humanos , Grupo Borrelia Burgdorferi/genética , Doença de Lyme/veterinária , Doença de Lyme/microbiologia , Ixodes/microbiologia , Evolução Biológica , Aves/microbiologia
8.
BMC Genomics ; 24(1): 401, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460975

RESUMO

BACKGROUND: Bacteria of the Borrelia burgdorferi sensu lato (s.l.) complex can cause Lyme borreliosis. Different B. burgdorferi s.l. genospecies vary in their host and vector associations and human pathogenicity but the genetic basis for these adaptations is unresolved and requires completed and reliable genomes for comparative analyses. The de novo assembly of a complete Borrelia genome is challenging due to the high levels of complexity, represented by a high number of circular and linear plasmids that are dynamic, showing mosaic structure and sequence homology. Previous work demonstrated that even advanced approaches, such as a combination of short-read and long-read data, might lead to incomplete plasmid reconstruction. Here, using recently developed high-fidelity (HiFi) PacBio sequencing, we explored strategies to obtain gap-free, complete and high quality Borrelia genome assemblies. Optimizing genome assembly, quality control and refinement steps, we critically appraised existing techniques to create a workflow that lead to improved genome reconstruction. RESULTS: Despite the latest available technologies, stand-alone sequencing and assembly methods are insufficient for the generation of complete and high quality Borrelia genome assemblies. We developed a workflow pipeline for the de novo genome assembly for Borrelia using several types of sequence data and incorporating multiple assemblers to recover the complete genome including both circular and linear plasmid sequences. CONCLUSION: Our study demonstrates that, with HiFi data and an ensemble reconstruction pipeline with refinement steps, chromosomal and plasmid sequences can be fully resolved, even for complex genomes such as Borrelia. The presented pipeline may be of interest for the assembly of further complex microbial genomes.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Doença de Lyme , Humanos , Borrelia/genética , Genoma Bacteriano , Filogenia , Borrelia burgdorferi/genética , Doença de Lyme/microbiologia , Grupo Borrelia Burgdorferi/genética
9.
Int J Parasitol ; 53(13): 751-761, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37516335

RESUMO

Ticks are important vectors of human and animal pathogens, but many questions remain unanswered regarding their taxonomy. Molecular sequencing methods have allowed research to start understanding the evolutionary history of even closely related tick species. Ixodes inopinatus is considered a sister species and highly similar to Ixodes ricinus, an important vector of many tick-borne pathogens in Europe, but identification between these species remains ambiguous with disagreement on the geographic extent of I. inopinatus. In 2018-2019, 1583 ticks were collected from breeding great tits (Parus major) in southern Germany, of which 45 were later morphologically identified as I. inopinatus. We aimed to confirm morphological identification using molecular tools. Utilizing two genetic markers (16S rRNA, TROSPA) and whole genome sequencing of specific ticks (n = 8), we were able to determine that German samples, morphologically identified as I. inopinatus, genetically represent I. ricinus regardless of previous morphological identification, and most likely are not I. ricinus/I. inopinatus hybrids. Further, our results showed that the entire mitochondrial genome, let alone singular mitochondrial genes (i.e., 16S), is unable to distinguish between I. ricinus and I. inopinatus. Our results suggest that I. inopinatus is geographically isolated as a species (northern Africa and potentially southern Spain and Portugal) and brings into question whether I. inopinatus exists in central Europe. Our results highlight the probable existence of I. inopinatus and the power of utilizing genomic data in answering questions regarding tick taxonomy.


Assuntos
Ixodes , Humanos , Animais , Ixodes/genética , RNA Ribossômico 16S/genética , Europa (Continente) , Alemanha , Portugal
10.
Mol Ecol ; 32(4): 786-799, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461660

RESUMO

Vector-borne pathogens exist in obligate transmission cycles between vector and reservoir host species. Host and vector shifts can lead to geographic expansion of infectious agents and the emergence of new diseases in susceptible individuals. Three bacterial genospecies (Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus). Through these vectors, the bacteria can infect various vertebrate groups (e.g., rodents, birds) including humans where they cause Lyme borreliosis, the most common vector-borne disease in the Northern hemisphere. Yet, how and in which order the three Borrelia genospecies colonized each continent remains unclear including the evolutionary consequences of this geographic expansion. Here, by reconstructing the evolutionary history of 142 Eurasian isolates, we found evidence that the ancestors of each of the three genospecies probably have an Asian origin. Even so, each genospecies studied displayed a unique substructuring and evolutionary response to the colonization of Europe. The pattern of allele sharing between continents is consistent with the dispersal rate of the respective vertebrate hosts, supporting the concept that adaptation of Borrelia genospecies to the host is important for pathogen dispersal. Our results highlight that Eurasian Lyme borreliosis agents are all capable of geographic expansion with host association influencing their dispersal; further displaying the importance of host and vector association to the geographic expansion of vector-borne pathogens and potentially conditioning their capacity as emergent pathogens.


Assuntos
Distribuição Animal , Vetores Aracnídeos , Borrelia , Ixodes , Doença de Lyme , Animais , Humanos , Ásia , Borrelia/genética , Borrelia/fisiologia , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/fisiologia , Ixodes/microbiologia , Ixodes/fisiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Europa (Continente) , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/fisiologia , Distribuição Animal/fisiologia , Adaptação Biológica/genética , Adaptação Biológica/fisiologia
11.
Microorganisms ; 10(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144413

RESUMO

Background: Despite a vaccination rate of 82.0% (n = 123/150), a SARS-CoV-2 (Alpha) outbreak with 64.7% (n = 97/150) confirmed infections occurred in a nursing home in Bavaria, Germany. Objective: the aim of this retrospective cohort study was to examine the effects of the Corminaty vaccine in a real-life outbreak situation and to obtain insights into the antibody response to both vaccination and breakthrough infection. Methods: the antibody status of 106 fully vaccinated individuals (54/106 breakthrough infections) and epidemiological data on all 150 residents and facility staff were evaluated. Results: SARS-CoV-2 infections (positive RT-qPCR) were detected in 56.9% (n = 70/123) of fully vaccinated, compared to 100% (n = 27/27) of incompletely or non-vaccinated individuals. The proportion of hospitalized and deceased was 4.1% (n = 5/123) among fully vaccinated and therewith lower compared to 18.5% (n = 5/27) hospitalized and 11.1% (n = 3/27) deceased among incompletely or non-vaccinated. Ct values were significantly lower in incompletely or non-vaccinated (p = 0.02). Neutralizing antibodies were detected in 99.1% (n = 105/106) of serum samples with significantly higher values (p < 0.001) being measured post-breakthrough infection. α-N-antibodies were detected in 37.7% of PCR positive but not in PCR negative individuals. Conclusion: Altogether, our data indicate that SARS-CoV-2 vaccination does provide protection against infection, severe disease progression and death with regards to the Alpha variant. Nonetheless, it also shows that infection and transmission are possible despite full vaccination. It further indicates that breakthrough infections can significantly enhance α-S- and neutralizing antibody responses, indicating a possible benefit from booster vaccinations.

12.
mSystems ; 7(4): e0048822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35938719

RESUMO

Host association-the selective adaptation of pathogens to specific host species-evolves through constant interactions between host and pathogens, leaving a lot yet to be discovered on immunological mechanisms and genomic determinants. The causative agents of Lyme disease (LD) are spirochete bacteria composed of multiple species of the Borrelia burgdorferi sensu lato complex, including B. burgdorferi (Bb), the main LD pathogen in North America-a useful model for the study of mechanisms underlying host-pathogen association. Host adaptation requires pathogens' ability to evade host immune responses, such as complement, the first-line innate immune defense mechanism. We tested the hypothesis that different host-adapted phenotypes among Bb strains are linked to polymorphic loci that confer complement evasion traits in a host-specific manner. We first examined the survivability of 20 Bb strains in sera in vitro and/or bloodstream and tissues in vivo from rodent and avian LD models. Three groups of complement-dependent host-association phenotypes emerged. We analyzed complement-evasion genes, identified a priori among all strains and sequenced and compared genomes for individual strains representing each phenotype. The evolutionary history of ospC loci is correlated with host-specific complement-evasion phenotypes, while comparative genomics suggests that several gene families and loci are potentially involved in host association. This multidisciplinary work provides novel insights into the functional evolution of host-adapted phenotypes, building a foundation for further investigation of the immunological and genomic determinants of host association. IMPORTANCE Host association is the phenotype that is commonly found in many pathogens that preferential survive in particular hosts. The Lyme disease (LD)-causing agent, B. burgdorferi (Bb), is an ideal model to study host association, as Bb is mainly maintained in nature through rodent and avian hosts. A widespread yet untested concept posits that host association in Bb strains is linked to Bb functional genetic variation conferring evasion to complement, an innate defense mechanism in vertebrate sera. Here, we tested this concept by grouping 20 Bb strains into three complement-dependent host-association phenotypes based on their survivability in sera and/or bloodstream and distal tissues in rodent and avian LD models. Phylogenomic analysis of these strains further correlated several gene families and loci, including ospC, with host-specific complement-evasion phenotypes. Such multifaceted studies thus pave the road to further identify the determinants of host association, providing mechanistic insights into host-pathogen interaction.


Assuntos
Borrelia burgdorferi , Borrelia , Doença de Lyme , Humanos , Filogenia , Doença de Lyme/genética , Borrelia burgdorferi/genética , Proteínas do Sistema Complemento/genética
13.
Microorganisms ; 10(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893571

RESUMO

The genus Borrelia encompasses bacterial pathogens that can cause Lyme borreliosis (LB) and relapsing fever (RF) [...].

14.
Ticks Tick Borne Dis ; 13(5): 101994, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35816828

RESUMO

The taxon names used in public databases are of critical importance in all areas of biology because they are needed for linking organisms to sequence data and other information. Since most users of taxonomic classifications may be unprepared for dealing with synonyms, the names that are preferred in such databases are of high impact. Using the genus Borrelia as an example, we here show how simplistic approaches for determining the preferred synonym may lead to biases regarding the preferences for taxonomic opinions. We highlight that in this and other cases where genera were split, for reverting to the previous "merged" genus it is neither possible nor necessary to generate validly published and legitimate names that are newer than those that were proposed as new combinations when the genus was split. The policy to always prefer the latest validly published name in a public database may thus render this database oblivious to reversals in taxonomic opinion. We emphasize that users of public databases should be aware of such potential shortcomings, and that curators of databases which provide nomenclatural information should be open-minded about taxonomic views expressed in the literature.


Assuntos
Borrelia , Viés
15.
J Wildl Dis ; 58(3): 646-651, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35737954

RESUMO

The Borrelia genus comprises vector-borne, spirochete bacteria infecting vertebrates worldwide. We characterized a novel relapsing fever Borrelia species from a desert cottontail (Syvilagus audubonii) from New Mexico, US, using an established multilocus sequence analysis approach. Phylogenetic analysis of the flagellin gene (flaB) and four other protein-coding loci (clpX, pepX, recG, rplB) grouped the novel Borrelia species with hard tick relapsing fever borreliae Borrelia lonestari, Borrelia theileri, and Borrelia miyamotoi. The identity of the vectors and other vertebrate hosts, geographic distribution, and zoonotic potential of this novel Borrelia species deserve further investigation.


Assuntos
Borrelia , Febre Recorrente , Animais , Borrelia/genética , New Mexico , Filogenia , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Febre Recorrente/veterinária
16.
Parasitol Res ; 121(3): 781-803, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35122516

RESUMO

Beside mosquitoes, ticks are well-known vectors of different human pathogens. In the Northern Hemisphere, Lyme borreliosis (Eurasia, LB) or Lyme disease (North America, LD) is the most commonly occurring vector-borne infectious disease caused by bacteria of the genus Borrelia which are transmitted by hard ticks of the genus Ixodes. The reported incidence of LB in Europe is about 22.6 cases per 100,000 inhabitants annually with a broad range depending on the geographical area analyzed. However, the epidemiological data are largely incomplete, because LB is not notifiable in all European countries. Furthermore, not only differ reporting procedures between countries, there is also variation in case definitions and diagnostic procedures. Lyme borreliosis is caused by several species of the Borrelia (B.) burgdorferi sensu lato (s.l.) complex which are maintained in complex networks including ixodid ticks and different reservoir hosts. Vector and host influence each other and are affected by multiple factors including climate that have a major impact on their habitats and ecology. To classify factors that influence the risk of transmission of B. burgdorferi s.l. to their different vertebrate hosts as well as to humans, we briefly summarize the current knowledge about the pathogens including their astonishing ability to overcome various host immune responses, regarding the main vector in Europe Ixodes ricinus, and the disease caused by borreliae. The research shows, that a higher standardization of case definition, diagnostic procedures, and standardized, long-term surveillance systems across Europe is necessary to improve clinical and epidemiological data.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Europa (Continente)/epidemiologia , Humanos , Ixodes/microbiologia , Mosquitos Vetores
17.
Appl Environ Microbiol ; 88(5): e0155521, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-34986011

RESUMO

Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere, caused by spirochetes belonging to the Borrelia burgdorferi sensu lato species complex, which are transmitted by ixodid ticks. B. burgdorferi sensu lato species produce a family of proteins on the linear plasmid 54 (PFam54), some of which confer the functions of cell adhesion and inactivation of complement, the first line of host defense. However, the impact of PFam54 in promoting B. burgdorferi sensu lato pathogenesis remains unclear because of the hurdles to simultaneously knock out all PFam54 proteins in a spirochete. Here, we describe two Borrelia bavariensis strains, PBN and PNi, isolated from patients naturally lacking PFam54 but maintaining the rest of the genome with greater than 95% identity to the reference B. bavariensis strain, PBi. We found that PBN and PNi less efficiently survive in human serum than PBi. Such defects were restored by introducing two B. bavariensis PFam54 recombinant proteins, BGA66 and BGA71, confirming the role of these proteins in providing complement evasion of B. bavariensis. Further, we found that all three strains remain detectable in various murine tissues 21 days post-subcutaneous infection, supporting the nonessential role of B. bavariensis PFam54 in promoting spirochete persistence. This study identified and utilized isolates deficient in PFam54 to associate the defects with the absence of these proteins, building the foundation to further study the role of each PFam54 protein in contributing to B. burgdorferi sensu lato pathogenesis. IMPORTANCE To establish infections, Lyme borreliae utilize various means to overcome the host's immune system. Proteins encoded by the PFam54 gene array play a role in spirochete survival in vitro and in vivo. Moreover, this gene array has been described in all currently available Lyme borreliae genomes. By investigating the first two Borrelia bavariensis isolates naturally lacking the entire PFam54 gene array, we showed that both patient isolates display an increased susceptibility to human serum, which can be rescued in the presence of two PFam54 recombinant proteins. However, both isolates remain infectious to mice after intradermal inoculation, suggesting the nonessential role of PFam54 during the long-term, but may differ slightly in the colonization of specific tissues. Furthermore, these isolates show high genomic similarity to type strain PBi (>95%) and could be used in future studies investigating the role of each PFam54 protein in Lyme borreliosis pathogenesis.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Ixodes , Doença de Lyme , Animais , Borrelia/genética , Grupo Borrelia Burgdorferi/genética , Humanos , Camundongos , Plasmídeos , Spirochaetales
19.
Microorganisms ; 9(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34946117

RESUMO

Polymyxin resistance, determined by mcr genes located on plasmid DNA, currently poses a high epidemiological threat. Non-typhoid Salmonella (NTS) are one of the key pathogens causing diarrheal diseases. Here, we report the isolation and whole genome sequencing of multidrug colistin-resistant/susceptible isolates of non-typhoid Salmonella enterica serovars carrying mcr genes. Non-typhoid strains of Salmonella enterica subsp. enterica were isolated during microbiological monitoring of the environment, food, and diarrheal disease patients between 2018 and 2020 in Russia (n = 586). mcr-1 genes were detected using a previously developed qPCR assay, and whole genome sequencing of mcr positive isolates was performed by both short-read (Illumina) and long-read (Oxford Nanopore) approaches. Three colistin-resistant isolates, including two isolates of S. Enteritidis and one isolate of S. Bovismorbificans, carried the mcr-1.1 gene located on IncX4 and IncI2 conjugative plasmids, respectively. The phenotypically colistin-susceptible isolate of S. Typhimurium carried a mcr-9 gene on plasmid IncHI2. In conclusion, we present the first three cases of mcr gene-carrying NTS isolates detected in Russia with both outbreak and sporadic epidemiological backgrounds.

20.
Microorganisms ; 9(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200876

RESUMO

Borrelia burgdorferi sensu lato (s.l.) causes the most common tick-borne infection in Europe, with Germany being amongst the countries with the highest incidences in humans. This study aimed at (1) comparing infection rates of B. burgdorferi s.l. in questing Ixodes ricinus ticks from different habitat types in Southern Germany, (2) analysing genospecies distribution by habitat type, and (3) testing tissue and ticks from hosts for B. burgdorferi s.l. Questing ticks from urban, pasture, and natural habitats together with feeding ticks from cattle (pasture) and ticks and tissue samples from wild boars and roe deer (natural site) were tested by PCR and RFLP for species differentiation. B. burgdorferi s.l. was found in 29.8% questing adults and 15% nymphs. Prevalence was lower at the urban sites with occurrence of roe deer than where these were absent. Borrelia burgdorferi s.l. DNA was found in 4.8% ticks from roe deer, 6.3% from wild boar, and 7.8% from cattle. Six genospecies were identified in unfed ticks: Borrelia afzelii (48.6%), Borrelia burgdorferi sensu stricto (16%), Borrelia garinii (13.2%), Borrelia valaisiana (7.5%), Borrelia spielmanii (6.2%), and Borrelia bavariensis (0.9%). This study shows high infection levels and a great diversity of Borrelia in questing ticks. The presence of roe deer seems to reduce B. burgdorferi s.l. infection rates in tick populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...